Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, paleobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology.

Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept “hard” versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM.

Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviewers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors. Final versions of manuscripts and figures are needed in a digital format.

Preparation of Manuscripts

All manuscripts must be typed in English, using Microsoft Word. Entire manuscript must be double-spaced, with margins of at least 2-3 cm on all sides of the page (A4). Pages should be numbered consecutively. Authors whose native language is not English are encouraged to have their manuscripts read by a native English-speaking colleague before submission. Nomenclature must be in agreement with the International Code of Zoological Nomenclature (4th edition 1999). Author(s) of species name must be provided when the scientific name of any animal species is first mentioned (the year of publication needs not be given; if you give it, then provide a full reference of this in the reference list). Authors of plant species name need not be given. Metric systems should be used. If possible, use the common font Times New Roman (12 pt) and use as little formatting as possible (use only bold and italics). Special symbols (e.g. male or female sign) should be avoided.
Title and Name(s) of Author(s): The title should be informative and as possible as brief, in boldface capital letters, not exceed twenty words. The higher taxa containing the taxa dealt with in the paper should be indicated in parentheses. Full name(s) of author(s) should come underneath the title with full address, each on a separate line. The author(s) name(s) should be given in boldface lower case.

Abstract: The abstract should be concise and should draw attention to the significant contents of the paper and the author's main conclusions. It should normally not exceed 200 words and should contain no uncommon abbreviations or references. Any new names or new combinations proposed in the paper should be mentioned. The abstract should be followed by a list of key words. Up to seven keywords should be suggested by the author.

Text: Regular papers include as the main sections (except in Book Reviews and Scientific Notes etc.); Introduction, Material & Methods, Results, Discussion, Acknowledgments and Literature Cited. The section introduction should be written without a title. However, the main sections may be varies with different types of papers. According to types of papers, main section can be changed. All scientific names (only genus and species group names) should be italicized throughout the paper, including literature cited. References should be cited in the text as Turgut (2003), Turgut & Turgut (2000) or Turgut et al. (2001) (3 or more authors), or alternatively in a parenthesis (Turgut, 2003; Turgut & Turgut, 2000 or Turgut et al., 2001). All literatures in the text must be listed alphabetically in the literature cited in the following format.

Journal paper:

Book chapter:

Book:
Turgut, A., Turgut, B. & Turgut, C. 2001. Title of Book, Publisher name and location, number of pages (e.g. 123 pp).

Internet resources:
Turgut, S. 2002. Title of website, database or other resources, Publisher name and location (if indicated), number of pages (if known). Available from: http://xxx.xxx.xxx/ (Date of access).
Tables, Illustrations and Photographs: Tables, illustrations and photographs should be submitted in a separate file, not embedded in the text. They should be given at the end of the manuscript. Please use the table function in your word processor to build tables so that the cells, rows and columns can remain aligned when font size and width of the table are changed. Illustrations should be clean, sharp, with good contrast. Small illustrations should be grouped into plates. For species illustration, line drawings are preferred, although good quality B&W photographs are also acceptable. Maximum size of printed illustration, including all legends, is 12 x 16 cm. Images must be submitted either in .tif, .jpg, or .pdf (PC compatible format strongly preferred). Digital versions of illustrations should be prepared as follows: photographs should be saved as .pdf or .tif format at 300 dpi. Line figures should be saved in .tif or .jpg at 300 dpi. All illustrations must be numbered consecutively using Arabic numerals. They should be cited “Fig. 1” or “Figs. 1–4” in sequential order. Photographs must be of exceptional quality, good contrast.

Scientific Notes and Book Reviews. These are usually short contributions, typically not exceeding one (Book Review) or two (Scientific Notes) printed pages. Scientific notes and book reviews lack an abstract and most of the main headings, except for the acknowledgments and the literature cited sections.

Page Charge: There is no page charge for publishing with MEZ.

MEZ are indexed Zoological Record, CAB Abstract,
TAXONOMIC STATUS OF THE EUROPEAN GENERA OF TRAVUNIIDAE (ARACHNIDA, OPILIONES, LANIATORES)

Adriano B. Kury* and Amanda C. Mendes*

* Departamento de Invertebrados, Museu Nacional/UFRJ. Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro - RJ – BRAZIL. E-mails: adrianok@gmail.com and amanda.mendes@gmail.com

ABSTRACT: The taxonomic status of the generic names of European Travuniidae is studied. Although the generic name Abasola Strand, 1928 is widely used, Travunia Absolon, 1920 is a valid replacement name for Absolonia Roewer, 1915, junior homonym of Absolonia Börner, 1901 (Collembola), while Abasola is a superfluous replacement name for the same. Type species of Travunia is Absolonia troglodytes Roewer, 1915. Travunia anophthalma Absolon, 1920 is an objective synonym of Absolonia troglodytes Roewer, 1915. The authorship of Dinaria is Roewer, 1935 (who first provided a formal proposal of the generic name as such), not Hadži, 1932 (who cited this as a nomen nudum). Type species of Dinaria is Travunia vjetrenicae Hadži, 1932. Peltonychia Roewer, 1935 and Kratochviliola Roewer, 1935 are unavailable names, being published after 1930 without an explicit designation of a type species among the species originally included. Since it was based on an unavailable name, Peltonychiinae Kratochvíl, 1958 is also unavailable. The authorship of Peltonychia must be credited to Martens, 1978 (who first gave a diagnosis and designated a type species), but the available generic name Hadziana Roewer, 1935, currently under the synonymy of Peltonychia, has priority and must be used instead of it, with Hadziana postumicola Roewer, 1935 as type species. The correct name of a superfamily including the Travuniidae and the Triaenonychidae should be Triaenonychoidea, not Travunioidea. The following new combinations are made: Abasola sarea Roewer, 1935, is newly combined as Hadziana sarea; Phalangodes navarica Simon, 1879 (currently Kratochviliola navarica) is newly combined as Hadziana navarica; Abasola hofferi Šilhavý, 1937 is newly combined as Travunia hoffert; Phalangodes claviger Simon, 1879 (currently Peltonychia clavigera) is newly combined as Hadziana clavigera; Peltonychia gabria Roewer, 1935 is newly combined as Hadziana gabria; Scotolemon leprieurii Lucas, 1860 (currently Peltonychia leprieurii) is newly combined as Hadziana leprieurii; Scotolemon piochardi Simon, 1872 (currently Peltonychia piochardi) is newly combined as Hadziana piochardi and Peltonychia tenuis Roewer, 1935 is newly combined as Hadziana tenuis.

KEY WORDS: Laniatores, Phalangodidae, Karst, hypogean fauna, Europe, Alps, Dinarids, Pyrenees.

TABLE OF CONTENTS

Introduction ... 2
Systematic and nomenclatural history of the Travuniidae ... 3
 1. The genera Travunia / Absolonia .. 3
 2. The family name Travuniidae ... 4
 3. The genus Dinaria ... 5
 4. The genera Hadziana/Peltonychia/Kratochviliola ... 6
 5. The genera Arbasus and Buemarinoa ... 7
 6. The subfamily Peltonychiinae .. 7
INTRODUCTION

Travuniidae Absolon & Kratochvíl 1932 is a family of Travunioidea, a well defined group but with no consensus in relation to the systematic status of the family group taxa (Maury, 1988; Hunt & Hickman, 1993; Karaman, 2005). Karaman (2005), when describing a new genus of Travunioidea, gave as comparison fine illustrations of genital and body outer morphology of *Abasola hofferi* Šilhavý, 1936 based on material from the type locality. Karaman used the same approach as Maury (1988), who gave up assigning his new genus *Picunchenops* to any family of Travunioidea.

The Travuniidae are represented by 17 species of tiny delicate laniatorids of the northern temperate areas, mainly in southeastern Europe (15 species, see Table 1), with one species from lava tubes in Western USA and another cave-dwelling in Japan (Roewer, 1935; Briggs, 1974; Suzuki, 1975; Martens, 1978). They have been repeatedly regarded as relictual members of disappeared biotas and most of the known species have been found only in caves. Because of the unique special claw structure called the peltonychium, the Travuniidae have been accepted relatively early in the literature (e.g. Roewer, 1935), while the related family Cladonychiidae Hadži, 1935 did not have such acceptance until being rediscovered by Briggs (1969), but it was then called Erebomastridae, while the original name was only much later unearthed by Cokendolpher (1985). Many current travuniid species were originally included in the Phalangodidae Simon, 1879. In the last 30 years no new species of Travuniidae has been described. Novak & Gruber (2000) and Novak (2004; 2005) critically summarized the records of the Travuniidae for Slovenia, Croatia and Bosnia & Herzegovina respectively.

Adequate descriptions lack for most species, more acutely regarding genital morphology. In the present paper the systematic status of the European nominal genera of Travuniidae is studied. The species of these genera are distributed in the Pyrenees, Southeastern/central Northern Alps, Sardinia and the Southern Dinarids. Non observance of ICZN rules by past authors caused some nomenclatural problems which will be addressed below. A detailed historic account of the circumstances which defined the creation of the family Travuniidae and its relevant generic and suprageneric names is given below each in a different section.
Systematic and nomenclatural history of the Travuniidae

The family Travuniidae constitutes one of the worst problems of the laniatorid taxonomy in the 20th century. The first travuniid to be described was *Scotolemon leprieuri* Lucas 1860, initially placed in Phalangodidae. It was followed by three species also placed in pre-existing phalangodid genera: *Phalangodes claviger* Simon 1879, *Scotolemon piochardi* Simon 1892 and *Phalangodes caecus* Simon 1911. Roewer (1935) reviewed the European Laniatores and described many new genera and species in Travuniidae, also placing in this family the phalangodid species cited above. Roewer (1935) misunderstood the taxonomic problems in Travuniidae, mainly by his ignorance on Absolon’s (1916; 1920) nomenclatural acts, explained in Czech, which he evidently did not understand. He also mistook Hadži’s (1932) Serbian language for Czech. This was the starting point of a series of nomenclatural errors which will be treated next.

1. The genera *Travunia* / *Absolonia*

Karel Absolon on 19th August 1913 found a juvenile laniatorid in the cave Đurović pećina, Močići near Cavtat in Southern Dalmatia (Croatia). He passed along this material to Roewer for identification. Based on a letter from Roewer dated 26th September 1913, stating it was an undescribed *Scotolemon* species, Absolon called his find “a blind *Scotolemon*” (Absolon, 1914: 222). Roewer (1915: 14), based on Absolon’s original material created the new genus *Absolonia* (which is a junior homonym of *Absolonia* Börner, 1901, Collembola – homonymy first noted by Absolon, 1920) and new species *Absolonia troglodytes*. Absolon (1916) described as new the same specimen from Đurović pećina, calling it *Scotolemon anophthalmum* (which turns the specific name *anophthalmum* into an objective synonym of *troglodytes*). Absolon (1920: 596) created the genus *Travunia* as a valid replacement name for *Absolonia*, but unaware of nomenclatural rules, used again the specific name *anophthalma*, forming *Travunia anophthalma* to replace *Absolonia troglodytes*. “Travunia” is the Latin name of the region around the city Trebinje in Herzegovina. Roewer (1923: 85) continued calling the species from Đurović pećina *Absolonia troglodytes*. Later, Absolon & Kratochvíl (1932a: 154; 1932b: 209) noted the mistake in creating *anophthalma* and correctly treated the species as *Travunia troglodytes*. In the first part of the same paper, the authors (1932a: 155) cited new records for *T. troglodytes* from Herzegovina (Babić pećina near Lastva, Torina jama near Bihovo and Vilina pećina E of Lastva). Oblivious of the creation (or the implications) of *Travunia*, Strand (1928) proposed the superfluous replacement name *Abasola* to take the place of *Absolonia*.
Roewer (1935: 79) stated that both species — *Abasola troglodytes* (material from Croatia) and *Travunia anophthalma* (material from Herzegovina) — were clearly different. The problem is that both names were based on the same Croatian material (making them objective synonyms) and the Herzegovinan material was only added 12 years later of the creation of the name *Travunia anophthalma*. Whether the Croatian and the Herzegovinan species are different or not is irrelevant to the present discussion.

Šilhavý (1936) described the new species *Abasola hofferi* from the cave Pokljuka Gornja, near the village of Knežlaz, Krivošije Mts., Montenegro, then Yugoslavia. Kratochvíl (1937), described a new species of *Travunia*, *T. jandai*, from a cave near the summit of the mountain Grabov in the island of Mljet, Dalmatia in Croatia. He provided a key to identify the five species of Travuniidae of Yugoslavia. The other four were *Abasola hofferi*, *Abasola troglodytes*, *Dinaria vjetrenicae* Hadži, 1932 and *Travunia anophthalma*.

The status of the species of *Travunia* in the Balkans is very complex and requires further study, we still do not know how many valid species live in the region (Novak, pers. comm.) but from the nomenclature point of view, *Abasola* is a synonym of *Travunia*. Subsequent authors (e. g. Hadži, 1932; 1973a-b; Roewer, 1935; Šilhavý, 1937; Juberthie, 1972; Martens, 1978; Karaman, 2005; Novak, 2004; 2005) ignored this and continued using *Abasola* instead of/along with *Travunia* creating a situation of *Abasola* being regarded as a different genus, but including the type species of *Travunia*.

Absolon’s (1920) proposal of *Travunia* as a new generic name for *Absolonia*, although extremely short, apparently complies with ICZN articles 12.1: “To be available, every new name published before 1931 must satisfy the provisions of Article 11 and must be accompanied by a description or a definition of the taxon that it denotes, or by an indication.” and article 12.2.5: the word "indication" denotes only the following: “in the case of a new genus-group name, the use of one or more available specific names in combination with it, or clearly included under it, or clearly referred to it by bibliographic reference, provided that the specific name or names can be unambiguously assigned to a nominal species-group taxon or taxa.” Likewise, being published before 1930, *Travunia* does not have to comply with article 13.1 “To be available, every new name published after 1930 must satisfy the provisions of Article 11 and must 13.1.3. be proposed expressly as a new replacement name (nomen novum) for an available name...”.

2. The family name Travuniidae

All the six species of Travuniidae known in the 1920’s/early 1930’s were originally placed in the Phalangodidae (e. g. Roewer, 1923). The
family Travuniidae was recognized (but not published as such) by Hadži — see his claims (Hadži 1932; 1933). Hadži started to share his knowledge with Kratochvíl, who acted quickly and had it published first (Absolon & Kratochvíl 1932a-b). For this family these authors used the name Peltasaeonychidae. Upon its creation the family included only the generic name *Travunia*. The family name Peltasaeonychidae was not based on the name of an included genus, being unavailable. Advised of that, the authors a few months later (Absolon & Kratochvíl, 1932c) proposed the family name Travuniidae as a replacement for Peltasaeonychidae.

3. The genus *Dinaria*

In August 1931, the “Gesellschaft für Höhlenforschung” (Society of Speleology) in Ljubljana (today in Slovenia, then in Yugoslavia) organized an expedition to the famous Vjetrenica cave in the southern margin of the Popovo polje in Herzegovina. Based on the material from this expedition, Hadži (1932) published the description of a new species of *Travunia, T. vjetrenicae*, in a paper written in Serbian. The paper was reissued (Hadži, 1933) as a German translation with all the species being cited again as “new”. Hadži provided a lengthy description, with many illustrations and a long winded discussion complaining sourly about Absolon and specially Kratochvíl. Hadži (1932; 1933) also stated that initially, when he discovered the new species, he thought *Travunia vjetrenicae* should constitute a new genus he was to name as *Dinaria*. But finally, he reconsidered and included the new species in a pre-existing genus, citing *Dinaria* only as a kind of name in schedula. He continued treating *T. vjetrenicae* as a member of *Travunia*, and it is clear that he did not mean to create a new genus *Dinaria*. Besides, he did not gave diagnostic characters to make this genus available. Hadži therefore created the non-available generic name *Dinaria*.

Roewer (1935: 75) reconciled Hadži’s paradox (the invalid creation of *Dinaria*) considering that *Dinaria* had been proposed as a subgenus of *Travunia* and as if he (Roewer) was elevating its rank to full genus. This is evident by Roewer’s use of the standard subgeneric formula “*Travunia (Dinaria)*” in the specific heading of *T. vjetrenicae*. But on the other hand, in the generic heading “Gattung: *Dinaria* Hadži” Roewer used the synonymic formula “*Travunia (= Dinaria)*”. Novak (2005: 311) was already aware of the problem and called the “funny” creation of *Dinaria* an “autosynonymy”.

In accordance with Novak (2005), we conclude that:

(1) Hadži’s (1932; 1933) use of *Dinaria* failed to meet ICZN articles 11.5: “To be available, a name must be used as valid for a taxon when proposed”, 11.6: “A name which when first published in an available work was treated as a junior synonym of a name then used as valid is
not thereby made available” and 13.1. “To be available every new name published after 1930 must satisfy the provisions of Article 11 and must” 13.1.1 “be accompanied by a description or definition that states in words characters that are purported to differentiate the taxon or” 13.1.2 “be accompanied by a bibliographic reference to such a published statement...or” 13.1.3 “be proposed expressly as a new replacement name (nomen novum) for an available name, whether required by any provision of the Code or not.”

(2) The description of *Dinaria* by Roewer (1935) who provided a type species (*Travunia vjetrenicae* Hadži, 1932 by monotypy) and a diagnosis formally satisfied ICZN rules. So, the authorship of *Dinaria* is Roewer, 1935, not Hadži, 1932.

4. The genera *Hadziana/Peltonychia/ Kratochviliola*

Roewer (1935: 55) created the genus *Peltonychia*, giving a diagnosis and a key to the six included species. He did not, however, explicitly choose a type species, which by the ICZN renders this generic name unavailable (see below). Roewer (1935: 64) described *Kratochviliola*, with three included species without designating a type species, which falls in the same case as *Peltonychia* being an unavailable name. Roewer (1935: 69) described the monotypic genus *Hadziana*, which has no nomenclatural problems.

Martens (1978) cast doubt on the validity of many genera of Travuniidae, but formally proposed only one generic and few specific synonymies. The only relevant point for us here is the synonymy of *Hadziana* with *Peltonychia* and the synonymy of two of the species of *Kratochviliola* under species of *Peltonychia*. Martens (1978: 70) wrote on *Peltonychia*: “Type species (designation by Rower, 1935): *Scotolemon leprieuri* Lucas, 1860”. That mentions an original designation by Roewer. We were unable to find any such designation of a type species for this or another genus in Roewer’s text. However, as Martens (1978) gave a diagnosis and mentioned explicitly the type species *S. leprieuri*, the authorship of *Peltonychia* must be attributed to Martens, 1978.

Novak et al. (1985) criticized the records of two species of *Peltonychia* — *P. postumicola* and *P. tenuis* — from Slovenia. According to their intensive search of the species, and following Thaler’s (1996) findings, Novak & Gruber (2000) concluded that Roewer original indications of type localities for three species of *Peltonychia* in Slovenia and in the adjacent regions of Italy are in error and that Travuniidae are to be removed from the faunal lists of Slovenia and northeastern Italy. Likewise, Novak & Gruber (2000) cast serious doubt on the existence of real species of *Peltonychia* in the Triestine Karst, concluding that *P. tenuis* and *P. gabria* are very similar to the Pyrenean *P. clavigera* and
P. postumicola belong to the general type of *P. clavigera* and is very similar to “*P. sarea*”, although these authors did not propose formal synonymies or combinations.

The diagnosis of *Kratochviliola* (Roewer 1935), is different from that of *Hadziana* only in the number of tarsomeres in leg II (6 versus 7-8). This is unconvincing, but Martens (1978), not having studied the type species of *Kratochviliola*, recognized both genera as valid. We do not think there is any justification for keeping these genera distinct, so the only species remaining in *Kratochviliola* should be combined under *Hadziana*.

Roewer’s creation of *Kratochviliola* and *Peltonychia* collides with ICZN article 13.3: “To be available, every new genus-group name published after 1930... must... be accompanied by the fixation of a type species in the original publication.” So, both names are unavailable. In the case of *Peltonychia*, the description given by Martens (1978) satisfied ICZN rules, but *Hadziana*, treated in the same paper as a junior synonym of *Peltonychia*, in fact has priority over it and must be used.

5. The genera *Arbasus* and *Buemarinoa*

Arbasus Roewer, 1935 and *Buemarinoa* Roewer, 1956 are monotypic genera. *Arbasus caecus* (Simon, 1911) is known only from a cave in the Pyrenees and *Buemarinoa patrizii* Roewer, 1956 from a cave in Sardinia. Both look superficially like members of *Hadziana*, but with clearly troglomorphic traits such as depigmentation, absence of eyes or eye mound, effacing of scutal grooves, elongate legs, slender pedipalps and very long basichelicere. Both genera are defined exclusively by tarsal segmentation — *Arbasus* has tetramere distitarsus II and *Buemarinoa* has trimere tarsus III — so their status is very doubtful.

6. The subfamily Peltonychiinae

Travuniidae was divided into two subfamilies – Peltonychiinae [sic] (should be properly Peltonychiinae) and Travuniinae (with single genus *Travunia*) – by Kratochvil (1958). This division, based only on the number of distitarsomeres of leg I, mirrored the misleading Roewerian dichotomy Phalangodinae versus Tricommatinae and subsequent authors did not adopt them. The three genera described later, *Buemarinoa* Roewer, 1956, *Yuria* Suzuki, 1964 and *Speleonychia* Briggs, 1974 have not been assigned to any of Kratochvil’s subfamilies and they are not mentioned by any other author.
Original spelling of the subfamily name created by Kratochvíl (1958) is incorrect, it should be Peltonychiinae instead of Peltonychinae. In any case this is an unavailable name because it is based on the (then) non-available generic name *Peltonychia*. Should the family Travuniidae be subdivided into subfamilies, new names will have to be created, because there is no available name besides the nominotypical Travuniinae.

7. The superfamily Travunioidea

Hadži considered both Travuniidae (1932) and Cladonychiinae (1935) as subfamilies of Triaenonychidae. By doing this, Hadži created the concept of the Travunioidea (*sensu* Kratochvíl, 1958; Martens, 1980) as equivalent to Insidiatores (*sensu* Kury, 2002). Hadži deserves credit for the Insidiatores (Travunioidea + Triaenonychoidea) hypothesis, which lasted half a century and still has to be convincingly tested to be ruled out.

Kratochvíl (1958) resurrected Hadži’s idea (1932; 1935) that Cladonychiidae and Travuniidae were closely related to the Triaenonychidae and proposed the superfamily Travunoidea [sic] to include the three cited families. The spelling was later corrected to Travunioidea by Shear (1977). Martens (1980) supported this hypothesis, which went largely unchallenged until Kury (2002) suggested that the Triaenonychidae as currently understood was a paraphyletic group, forming two clades, the Travunioidea and the Triaenonychoidea, the latter being sister group to the Grassatores Kury, 2002. A detail no one has noticed is that by ICZN rules, if the Insidiatores Loman 1900 is to be retained as the Hadži/Kratochvíl/Martens concept, then Triaenonychoidea Sørensen, 1886 has priority over Travunioidea Absolon & Kratochvíl, 1932 as the superfamily name. This oversight, starting with Kratochvíl (1958) was propagated through many authors (Shear, 1977; Martens, 1980; Kury, 2003; Hallan, 2006). The precedence of Triaenonychoidea was first noted in a letter from Miguel Angel Alonso-Zarazaga (2003, in litt.) to A. Kury, and then later independently in another message from Wojciech Staręga (2004, in litt.) to the same.

DISCUSSION

An examination on the penial morphology as published (Juberthie, 1972; Martens, 1976; 1978; 1986; Chemini, 1985; Thaler, 1996; Karaman, 2005 and Novak, 2005) lets us recognize two sharply distinct groups of genera of Travuniidae (Pyrenean/Alpine versus Dinarid): 1) *Hadziana* endemic of the Pyrenees and the Southeastern/central Northern Alps with (a) muscle restricted to bulbous basal part of truncus, (b) glans capsule clearly articulated with truncus and (c) aletae.
absent or much reduced; 2) *Dinaria* and *Travunia*, endemic of the Southern Dinarids (penis of type species of *Travunia* unknown, holotype of *Travunia troglodytes* is a juvenile) with (a) muscle stretched along truncus, thicker in the middle, (b) glans capsule undefined and (c) aletae well developed as large “ears”.

Abasola is a synonym of *Travunia*, so judging only by the nomenclature, all species of *Abasola* should be allocated in *Travunia*. This is indeed the case of *Abasola hofferi* Šilhavý, 1937 which should be under *Travunia*. But on the other hand, *Abasola sarea* geographically and morphologically belongs to the Pyrenean travuniids and should be accordingly newly combined under *Hadziana*.

The genital structure of species of *Hadziana* as described above is clearly more similar to the Cladonychiidae than to traditional Travuniidae. If it proves to be synapomorphic, it would render the Travuniidae paraphyletic relative to the Cladonychiidae. It is clear that much basic taxonomic work is still needed to clarify the complex relationships among the Travuniidae and related families. The current simplistic view of Dinarid Travuniidae is likely to be greatly expanded and refined by just recognizing a diversity greater than earlier acknowledged.

CONCLUSIONS

A series of changes are introduced in the classification of the family Travuniidae. A synoptic classification of the relevant names of Travuniidae reflecting these changes is shown in the Table 2. Our conclusions follow:

1. Triaenonychoidea Sørensen, 1886 has priority over Travunioidea Absolon & Kratochvíl, 1932 as the superfamily name including the Travuniidae + Triaenonychidae.

2. Peltonychiinae Kratochvíl, 1958 is an unavailable name because it is based on the (then) non-available generic name *Peltonychia*.

3. *Travunia* Absolon, 1920 is a valid replacement name for *Absolonia* Roewer, 1915 and *Abasola* Strand, 1928 is a superfluous replacement name for *Absolonia*. Type species of *Travunia* is *Absolonia troglodytes* Roewer, 1915, by monotypy.

4. *Scotolemon anophthalum* Absolon, 1916 is a nomen nudum, this species was only formally described as *Travunia anophthalma* Absolon, 1920. *T. anophthalma* is an objective synonym of *Absolonia troglodytes* Roewer, 1915. The combination for this species should be *Travunia troglodytes* (Roewer, 1915).
(5) *Dinaria* as described by Hadži (1932) is not a valid name and it was first given a formal description by Roewer (1935). The authorship of the genus is thus *Dinaria* Roewer, 1935, type species *Travunia vjetrenicae* Hadži, 1932, by monotypy.

(6) *Arbasus* Roewer, 1935 and *Buemarinoa* Roewer, 1956 are both available and valid generic names, but their taxonomic status is uncertain pending further study of their type species.

(7) *Peltonychia* as described by Roewer (1935) is not a valid name and was first given a formal description by Martens (1978). The authorship of the genus is thus *Peltonychia* Martens, 1978, type species *Scotolemon leprieurii* Lucas, 1860, by original designation.

(8) *Peltonychia* Martens, 1978 is newly proposed as a junior subjective synonym of *Hadziana* Roewer, 1935. All the species currently included in *Peltonychia* should be combined under *Hadziana*.

(9) *Kratochviliola* Roewer, 1935 is not an available name and its only currently included species, *Phalangodes navarica* Simon, 1879 (currently *Kratochviliola navarica*) is newly combined as *Hadziana navarica* (Simon, 1879).

(10) *Abasola sarea* Roewer, 1935 is newly combined as *Hadziana sarea* (Roewer, 1935).

(11) *Abasola hofferi* Šilhavý, 1937 is newly combined as *Travunia hofferi* (Šilhavý, 1937).

ACKNOWLEDGEMENTS

We thank Luis Eduardo Acosta (Córdoba), Ivo M. Karaman (Novi Sad), Tone Novak (Maribor) and Miguel Ángel Alonso-Zarazaga (Madrid) for comments on different versions of the draft text. We also thank Vlastimil Růžička (Czech Academy of Sciences) for help with literature. This study was supported by grant # 520406/98-2 from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to ABK and a scholarship from Coordenação de Pessoal de Ensino Superior (CAPES) to ACM.

LITERATURE CITED

Absolon, K. 1914. Výsledky výzkumných cest po Balkáně. Část třetí. [Results of research trips in the Balkans. 3rd part]. Časopis moravského musea zemského, Brno, 14: 216-222. [In Czech).

Table 1. Summary of the current taxonomy of the European Travuniidae. Use of *Abasola* vs *Travunia* is inconsistent in the literature (see text for details).

Abasola Strand, 1928
- *Abasola sarea* Roewer, 1935
- *Abasola hofferi* Šilhavý, 1937
- *Abasola troglodytes* (Roewer, 1915)

Arbasus Roewer, 1935
- *Arbasus caecus* (Simon, 1911)

Buemarinoa Roewer, 1956
- *Buemarinoa patrizii* Roewer, 1956

Dinaria Roewer, 1935
- *Dinaria vjetrenicae* (Hadži, 1932)

Kratochviliola Roewer, 1935
- *Kratochviliola navarica* (Simon, 1879)

- *Peltonychia clavigera* (Simon, 1879)
- *Peltonychia gabria* Roewer, 1935
- *Peltonychia leprieuri* (Lucas, 1860)
- *Peltonychia pirochardii* (Simon, 1872)
- *Peltonychia postumicola* (Roewer, 1935)
- *Peltonychia tenuis* Roewer, 1935

Travunia Absolon, 1920
- *Travunia borisi* (Hadži, 1973)
- *Travunia jandai* Kratochvíl, 1937
- *Travunia anophthalma* Absolon, 1920
Table 2. Proposed classification of the European Travuniidae (*indicates type species; ? indicate doubtful species):

Arbasus Roewer, 1935
 Arbasus caecus (Simon, 1911) – France

Buemarinoa Roewer, 1956
 Buemarinoa patrizii Roewer, 1956 – Sardinia

Dinaria Roewer, 1935
 Dinaria vjetrenicae (Hadži, 1932) – Bosnia and Herzegovina.

 Hadziana clavigera (Simon, 1879) new combination – France, Spain.
 ?*Hadziana gabria* (Roewer, 1935) new combination – “Italy”.
 Hadziana leprieurii (Lucas, 1860) new combination – Italy, Switzerland.

Hadziana navarica (Simon, 1879) new combination – France, Spain.
 ?*Hadziana piochardi* (Simon, 1872) new combination – Spain.
 Hadziana postumicola Roewer, 1935 – “Italy, Slovenia”.
 ?*Hadziana tenuis* (Roewer, 1935) new combination – “Slovenia”.

 Travunia borisi (Hadži, 1973) – Bosnia and Herzegovina.

Travunia jandai Kratochvíl, 1937 – Croatia
 Travunia troglodytes (Roewer, 1915) – Bosnia and Herzegovina, Croatia.
RE-DESCRIPTION OF URODIASPIS TECTA (KRAMER, 1876) (ACARINA: MESOSTIGMATA: UROPODINA)

Durmuş Ali Bal* and Muhlis Özkan**

* Atatürk University, Education Faculty, Erzincan / TÜRKİYE. E-mail: bal@atauni.edu.tr
** Uludağ University, Education Faculty, Bursa / TÜRKİYE. E-mail: muozkan@uludag.edu.tr

ABSTRACT: Urodiaspis tecta (Kramer, 1876) is redescribed and illustrated, based on the protonymph, deutonymph and on adult female specimens collected from Erzincan, Erzurum and Gümüşhane, Turkey. The genus has been recorded for the first time from Asian continent.

KEY WORDS: Acari, Uropodina, Urodiaspis tecta, redescription, Turkey.

Berlese created the genus Urodiaspis in 1916, with the type species Urodiaspis (Diurodinychus) tecta (Kramer, 1876). This genus has been studied by some authors since Berlese, and recently reviewed by Hirschmann (1984a). According to Hirschmann and Wiśniewski (1993), and Wiśniewski (1993) the genus is represented in the world with 21 species. Hirschmann (1984a) and his co-worker Wiśniewski (1993) divided the genus Urodiaspis into six species-groups for easy identification and he could not group some species and gave them the title “Nicht eingeordnet”. Some species in this category have carried features of an independent genus, and the genus needs a serious revision (Athias-Binche & Błoszyk, 1985).

Species of the genus Urodiaspis live in litter, soil substrates, moss, decaying woods, rotten leaves, humus and heterogeneous decomposed organic materials of various types of broad-leaved deciduous or coniferous forests (also in tropical forest). Occasionally, they colonise specific subcorticolous habitats, nest of vertebrates (Aves, Mammalia), ants and bumble-bees (Hymenoptera: Formicoidea, Apoidea). They can also penetrate into cultivated landscape habitats (orchards, gardens and other degraded or agricultural stands in non-forested areas) (Hirschmann & Wiśniewski, 1993; Karg, 1989; Mańán, 2001).

Some uropodina specimens were collected from soil and litter under evergreen and deciduous trees, decayed and decaying woods, from the bark of trees and nests of ants at Gümüşhane and Erzincan provinces in Turkey. Among this material, Urodiaspis tecta is new for the Turkish and Asian fauna. Epigynium of Turkish specimens with web-like ornaments and with epistome having reduced middle apical branch. These characters were not recorded from European relatives of the species so far (Hirschmann & Zirngiebl-Nicol, 1965, 1967; Zirngiebl-Nicol, 1972, 1973; Hirschmann, 1972a, 1972b, 1979, 1984a, 1984b;

Chaetotactic symbols are mainly adapted from Hirschmann and Zirngiebl-Nicol (1965), Karg (1989), and also from Evans (1957, 1972, 1992), Krantz (1978) and Evans and Till (1979). Specimen collection, extraction, preservation and preparation for examination were given by Bal and Özkan (2005). Specimens are mounted in Hoyer’s medium and examined with a Nikon E-600 compound microscope equipped with differential interference contrast and phase contrast systems. All measurements are given in micrometers (μm). Materials are deposited in the Bal’s mite collection, and in the Atatürk University Zoology Museum (AUZM).

Urodiaspis Berlese, 1916

Re-description. Dorsum with a solid or partly fused post-dorsal plate, idiosoma longer than wider. Dorsal plate connected anteriorly with marginal plate; with simple, acuminate, serrate or scimitar-shaped setae. Chelicera with small nodus; fixed digit with hyaline helmet-like ending and tip inclined downward; sensillum distale, proximale and ventrale on fixus digit present, sensillum distale situated on venter; cavicula fixi short and with or without serrula denticulata; movable digit with sensillum mobile and shorter than fixed digit; condylus cudgel-like and in moderate length. Corniculi horn-like, laciniae long, narrow and sharpened. Protosternum denticulated or smooth and with denticles at lateral edges. Deutosternum fused, with 3–5 rows of denticles in females, double rows in males; hypostomal setae C1 and C2 smooth and needle-like, C3 and C4 denticulated, C2 shortest, occasionally thickened and thorn-like, C1 and C3 longest, C4 in moderate length. Epistome narrowed, lancet-like, distally with 1–3 pointed tips and laterally with denticulated margins. Basal part of tritosternum vase- or sack-like, without or with small denticles anteriorly; lacinia 3-branched, denticulated middle branch longer than denticulate or smooth lateral branches (Hirschmann and Wiśniewski, 1993).

Urodiaspis tecta (Figs. 1–6)

Examined materials: 2♀♀ found in soil and litter under pine trees (*Pinus sylvestris*), Erzincan province, Ahmediye village (39° 86’ N, 39° 36’ E), altitude 1858 m, 9.V.2001; 3♀♀ found under bark of decaying stump of *Quercus infectoria*, same locality and date; 2♀♀, same locality, 17.III.2000; litter from deciduous forest with *Populus tremula, Quercus infectoria, Quercus petraea*, 1♀, 1 DN, 1 PN, Gümüşhane
province, Yeniyol village (39° 90’ N, 39° 38’ E), altitude 218 m, 4.VI.2005; moss and litter under Carpinus betulus, 1♀, Erzurum, İspir, Mescitli village, Mescit Mountains (40° 23’ N, 40° 66’ E), altitude 2238 m, 21.VII.2000; soil and litter under Juniperus communis, 1♀, Erzurum, İspir, south of Bademli village, Petekli forests (40° 41’ N, 40° 93’ E), altitude 2102, 31.V.2000; litter and soil from forest basin, 1♀, Erzurum, Olur, Dağtarlaları region (40° 85’ N, 42° 07’ E), altitude 1613 m, 31.V.2000.

Re-description. Female. Idiosoma oval, 740 long, 580 wide and egg-like. Body well sclerotized and brown. Marginal plate surrounding dorsal and post-dorsal plates. Dorsal plate differentiated from post-dorsal and marginal plate, all dorsal body setae short, thorn-like, not reaching insertions of following setae. Dorsal, marginal and post-dorsal plates with 40–50, 29 and 3 setae pairs, respectively. Some medially situated dorsal setae unpaired. Marginal setae short, smooth and simple. I4 setae on post-dorsal plate longer and thicker than all other dorsal body setae. Other post-dorsal setae I5 and Z5 small. Punctuation of plates faint and dense (Fig. 1).

Sternal, ventrianal and endopodal plates densely ornamented with small subcircular depressions. Also, all ventral regions of idiosoma with polygonal pattern and fine punctations. Peritreme with a hook-like bend in anterior section and tip directed interiorly; posterior tip directed exteriorly and ended at level of coxae III (Fig. 2). Epistom half-moon-like; anterior margin densely roughed in camerostome, surface with small bright pores. Genital plate finely punctated, ornamented with polygonal pattern, iron-shaped, anteriorly concave, smooth in the posterior part and situated between coxae II–IV; 212 long and 130 wide. Setae v1 just behind of coxae I, v2 at level of coxae II, v3 between coxae II–III, v4 between coxae III–IV and v5 near posterior end of genital plate. Metapodal line absent. A distinctive ring-like sclerotization behind of pedofossae IV present. 2x-setae present. Adgenital setae Ia–Ia’ and postanal seta Us smooth, long and thickened.

Hypostomal laciniae extremely long, narrow, sharply pointed, third of the lower part jagged; C2 short, smooth, adjacent to C3; C3 a little longer than smooth C1, 3 1/2xC2 long, with 4 denticles at one-side; C4 is shorter than C2 = 1 1/2xC2 long; setae C3 and C4 branched; setae C2 smooth not reach base of C1 (Fig. 3C). Chelicerae with a small nodus (Fig. 3A). Corniculus horn-like. Hypostome articulated between C3–C4 (Fig. 3C). Epistome lancet-like, anterior part two long branches, with margins denticulate, third middle branch fairly reduced (Fig. 3B). Tritosternum cup-shaped basally, its lacinia with three branches and branches with fine spines (Fig. 3D).

All pedofossae well developed. Coxae I broad, and hide tritosternum and gnathosomal apparatus (Fig. 2). All legs terminating with a
pulvillus and two claws, tarsi on all legs bear a pairs of digits at tip of ambulacral prolongation; setae on legs thorn-like. All femora bearing a membraneous flap (Fig. 4).

Deutonymph

Idiosoma 640 long, 520 wide. All idiosomal plates with micropores; all dorsal and ventral setae thorn-like. Sternal plate anvil-like, 280 long and 140 wide and bearing five pairs of setae (ν1–ν5). Setae ν1, ν2, ν3, ν4, ν6 and ν8 on ventrianal plate, but V7 pair arising from soft membraneous integument out of ventrianal plate. Ventrianal plate boat in shape, 280 long and 140 wide, and postanal seta U present. Distance between coxae II, III and IV: 93, 152 and 130, respectively. Metapodal plate IV with web-like ornaments finely punctated. A pair of lyrifissures occuring close to setae u1. Coxae I large, placed close to each other; pedofossae distinct. Ventrianal plate with a pair of lyrifissures close to anus laterally. Anterior prolongation of peritreme twisted, long and directed interiorly, its posterior part short, directed backward (Fig. 5).

Protonymph

Idiosoma 487 long, 370 wide; podonotal plate spear-like, 330 long and 290 wide. Five pairs of mediodorsal setae (ι2–5, z2) on the plate. Lateral plates (158 long and 63 wide) tri-cornered and with micropores. Pygidial plate three cornered, 47 long and 173 wide. Seven pairs of setae arising laterally on the anterior half of the idiosoma (ιι, ι1, 2, s5–7, z1), and setae ι1–3 and ι1 located on lateral plates. Setae ι4 longer and stouter than all other dorsal setae. All dorsal setae needle-like, smooth and slender (Fig. 6A).

Sternal plate 145 long and 85 wide, and with three pairs of short and straight setae. Anal plate widely oval, 52 long and 180 wide. Peritremes located at the level of coxae II–III, both prestigmatic sections turned externally. Setae V5, V2, V6 and V8 straight, needle-like and on soft membrane; V4 robust and situated on anal plate, postanal seta U short and thorn-like. Ingual plates with micropores and not bearing setae, located behind coxae IV. Coxae I large, placed close to each other; pedofossae distinct and well developed. Hypostomal setae, epistome, tritosternum, chelicerae and palps resembling those of female (Fig. 6B).

Larva: Unknown

Distribution:

Europe (Austria, Belgium, Czech republic, England, France, Germany, Hungary, Ireland, Poland, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Ukraine)

The species is new record for Turkey.
Remarks:

Urodiaspis tecta with widely rounded idiosoma, 6-setal postdorsum, increased number of marginal setae, strongly sclerotized form in metapodal regions, endopodal lines, adjacent v1 setae and without metapodal lines, together with another species _Urodiaspis stammeri_ Hirschmann et Zirngiebl-Nicol 1969. _Urodiaspis tecta_ is common in European countries and is known a continent endemic peculiar to European countries. Species is very tolerant to different microhabitats (grass, forest basin, humus, litter, moss and insect gallery). Turkish specimens have very similar morphological characters with Europeans specimens, but all ventral plates with web-like ornaments, and tectum split into 2 branches, middle part extremely reduced, useful diagnostic characters for the Turkish specimens. Turkish specimens resemble closely European specimens in all other features.

In the closely related species, _U. stammeri_, scabellum in the middle with funnel-like form, its lateral margins and widened exopodal plates abutting each other and forming “joint coupling”, whole anterior margin of scabellum delicately serrated; in _U. tecta_ scabellum in the middle without funnel-like form, exopodal plates not abutting to free lateral margins of scabellum, anterior margin of scabellum delicately serrated only in the middle part.

Abbreviations

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Salih DOĞAN (Atatürk University, Erzurum, Turkey) for his useful comments on the manuscript, Dr. Jerzy BŁOSZYK (Adam Mickiewicz University, Poland) for their support by providing European specimens, and Dr. Peter MAŠÁN (Institute of Zoology, Slovak Academy of Sciences, Bratislava) for his useful information on Slovak and Finland specimens.

LITERATURE CITED

Fig. 1. *Urodiaspis tecta* (female): Dorsal view. Scale: 200 µm.
Fig. 2. *Urodiaspis tecta* (female): Ventral view. Scale: 200 µm.

Fig. 3. *Urodiaspis tecta* (female): A – chelicera, B – epistome, C – venter of gnathosoma with palp, D – tritosternum. Scale: 100 µm.
Fig. 4. *Urodiaspis tecta* (female): A – leg I, B – leg II, C – leg III, D – leg IV. Scale: 100 µm.

Fig. 5. *Urodiaspis tecta* (deutonymph): A – dorsal view, B – ventral view. Scale: 200 µm.
Fig. 6. *Urodiaspis tecta* (protonymph): A – dorsal view, B – ventral view. Scale: 200 µm.
NEW REPLACEMENT NAMES FOR THREE PREOCCUPIED LADYBIRD GENERA (COLEOPTERA: COCCINELLIDAE)

Hüseyin Özdikmen*

* Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Ankara, 06500 TÜRKİYE, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: Three junior homonyms were detected amongst the Coccinellidae and the following replacement names are proposed: Semra nom. nov. for Cinachyra Gorham, 1899 (Ortaliiinae), Meltema nom. nov. for Corystes Mulsant, 1850 (Scymninae) and Nurettinus for Discoceras Sicard, 1909 (Coccidulinae). Accordingly, new combinations are herein proposed for the type species currently included in these genera: Semra picta (Gorham, 1899) comb. nov. from Cinachyra Gorham, 1899, Meltema hypocrita (Mulsant, 1850) comb. nov. and Meltema cavifrons (Weise, 1903) comb. nov. from Corystes Mulsant, 1850 and Nurettinus fulvivestis (Sicard, 1909) comb. nov. from Discoceras Sicard, 1909.

KEY WORDS: Semra, Meltema, Cinachyra, Corystes, homonymy, replacement names, Coccinellidae, Coleoptera.

In an effort to reduce the number of homonyms in Coccinellidae (Coleoptera), I systematically checked all generic names published. I found three ladybird genera whose names had been previously published for other taxa, making them junior homonyms. In accordance with the International Code of Zoological Nomenclature, I propose substitute names for these generic names.

Genus Semra nom. nov.

The generic name Cinachyra Sollas, 1886 was proposed for a genus of the sponge family Tetillidae (with the type species Cinachyra barbata Sollas, 1886). It is still used as a valid generic name in Porifera. For the present, Fangophilina Schmidt, 1880; Spiretta Lendenfeld, 1888; Tethypsilla Lendenfeld, 1888 and Kaira de Laubenfels, 1936 are the junior synonyms of Cinachyra Sollas, 1886 (Hooper 2000). Later, the generic name Cinachyra Gorham, 1899 was introduced for a new ladybird genus (with the type species Cinachyra picta Gorham, 1899) of the family Coccinellidae. Also it is still used as a valid generic name in Coleoptera. (Fürsch 1990 and 2004). Thus, the genus Cinachyra Gorham, 1899 is a junior homonym of the genus Cinachyra Sollas, 1886. According to Article 60 of the International Code of Zoological Nomenclature, I propose for the genus Cinachyra Gorham, 1899 the
new replacement name *Semra nom. nov.* As a result of this application, *Cinachyra* Gorham, 1899 is replaced with *Semra nom. nov.* The following new combination is *Semra picta* (Gorham, 1899), *comb. nov.*

SYSTEMATIC ACCOUNTS

Order Coleoptera
Superfamily Cucujoidea
Family Coccinellidae
Subfamily Ortaliinae
Genus *Semra new replacement name*
For *Cinachyra* Gorham, 1899, junior homonym of *Cinachyra* Sollas, 1886.
Type species: *Cinachyra picta* Gorham, 1899
Gender: Feminine.
Etymology: Semra is given to honour my colleague Semra Turgut.
Species *Semra picta* (Gorham, 1899) *comb. nov.*

Genus Meltema nom. nov.

The generic name *Corystes* was initially introduced by Bosc (1802) for a type genus of the crab family Corystidae (with the type species *Cancer cassivelaunus* Pennant, 1777). It is still used as a valid generic name in Decapoda (Moyse and Smaldon 1990; Skewes 2001; VLIZ 2004). Subsequently, Mulsant (1850) described a beetle genus of the family Coccinellidae (with the type species *Corystes hypocrita* Mulsant, 1850) under the same generic name. It is still used as a valid generic name in Coleoptera too (Fürsch 1990 and 2004). Thus, the genus *Corystes* Mulsant, 1850 is a junior homonym of the genus *Corystes* Bosc, 1802. According to Article 60 of the International Code of Zoological Nomenclature, I propose for the genus *Corystes* Mulsant, 1850 the new replacement name *Meltema nom. nov.* As a result of this application, *Corystes* Mulsant, 1850 is replaced with *Meltema nom. nov.* The following new combination is *Meltema hypocrita* (Mulsant, 1850), *comb. nov.*

SYSTEMATIC ACCOUNTS

Order Coleoptera
Superfamily Cucujoidea
Family Coccinellidae
Subfamily Scymninae
Genus *Meltema* **new replacement name**
For *Corystes* Mulsant, 1850, junior homonym of *Corystes* Bosc, 1802.
Type species: *Corystes hypocrita* Mulsant, 1850
Gender: Feminine.
Etymology: *Meltema* is given to honour my wife Meltem Özdikmen.

Subgenus *Meltema* **new replacement name**
For subgenus *Corystes* Mulsant, 1850
Type species: *Corystes hypocrita* Mulsant, 1850
Species *Meltema* (*Meltema*) *hypocrita* (Mulsant, 1850) **comb. nov.**

Subgenus *Diazonema* Weise, 1903
Type species: *Diazonema cavifrons* Weise, 1903
Species *Meltema* (*Diazonema*) *cavifrons* (Weise, 1903) **comb. nov.**

Genus Nurettinus nom. nov.

The generic name *Discoceras* was proposed by Barrande, 1867 with the type species *Clymenia antiquissima* Eichwald, 1842 (from the Ordovician of Estonia and Norway) for a macrofossil genus of the nautiloid family Trocholitidae. It is still used as a valid generic name in Cehalopoda (Kazlev, 2002). Later, the generic name *Discoceras* Sicard, 1909 was introduced for a new ladybird genus (with the type species *Discoceras fulvivestis* Sicard, 1909) of the family Coccinellidae. Also it is still used as a valid generic name in Coleoptera (Fürsch, 1990 and 2005). Thus, the genus *Discoceras* Sicard, 1909 is a junior homonym of the genus *Discoceras* Barrande, 1867. According to Article 60 of the International Code of Zoological Nomenclature, I propose for the genus *Discoceras* Sicard, 1909 the new replacement name *Nurettinus* nom. nov. As a result of this application, *Discoceras* Sicard, 1909 is replaced with *Nurettinus* nom. nov. The following new combination is *Nurettinus fulvivestis* (Sicard, 1909), **comb. nov.**

SYSTEMATIC ACCOUNTS

Order Coleoptera
Superfamily Cucujoidae
Family Coccinellidae
Subfamily Coccidulinae
Genus *Nurettinus* **new replacement name**
For *Discoceras* Sicard, 1909, junior homonym of *Discoceras* Barrande, 1867.
Type species: *Discoceras fulvivestis* Sicard, 1909
Gender: Masculine.
Etymology: Nurettinus is given to honour my father Nurettin Özdikmen.
Species *Nurettinus fulvivestis* (Sicard, 1909) **comb. nov.**

LITERATURE CITED

ABSTRACT: The common looper caterpillar, *Buzura suppressaria* and the red slug caterpillar, *Eterusia magnifica* are serious defoliators of tea bushes (*Camellia sinensis*) of the Terai and Dooars areas of Darjeeling and N.E. India. While the former species prefers young leaves, the latter feeds on more mature leaves. This study aims to find the difference of the nutritional indices for the two folivores, such as relative consumption rate (RCR), relative growth rate (RGR), gross growth efficiency (ECI), net growth efficiency (ECD) and approximate digestibility (AD) and relate the same with their maintenance cost and production index (body mass). *B. suppressaria* has an edge over *Et. magnifica* as far as RCR and AD values are concerned. However, *Et. magnifica* could make up for the poor food quality (as they feed on mature tea leaves) by increasing their feeding period and better food conversion efficiencies. Higher value of AD in *B. suppressaria* may be due to higher quantity of the digestive enzymes in the midgut of this caterpillar. Significant differences in the activities of amylase, protease and lipase could be detected at salivary and midgut levels in the two folivores. The adaptive strategies in exploiting the different qualities of leaves, from two hampers of tea bushes is important for optimal food utilization by the two folivores with niche segregation.

KEY WORDS: *B. suppressaria*, *Et. magnifica*, *Camellia sinensis*, nutritional indices, digestive enzymes, Darjeeling

The common looper caterpillar, *Buzura suppressaria* Guen. and the red slug caterpillar, *Eterusia magnifica* Butl. are serious defoliating pests of tea, *Camellia sinensis* (L) O. Kuntze from Terai and the Dooars areas of Darjeeling and N.E. India (Anonymous, 1994). Of these folivores the former exercises preference for young and the latter for mature tea leaves. In case of severe infestation however, they may eat the entire leaf, as well as the woody parts of the bush. In order to have a better understanding of feeding biology of both the pests the present study was undertaken on their food consumption, utilization and digestive enzymes. The nutritional requirements of an insect change throughout development and such changes are typically reflected in changes of its food consumption and feeding behaviour (Barton...
Browne, 1995). Numerous studies in the field of nutritional physiology have reviewed the effects of nutritive compounds (Mattson, 1980; Felton, 1996) on insect responses. Some of the nutritional responses are adaptive, such as preingestive increase in consumption of nutritionally poor food (Taylor, 1989; Woods, 1999) or postingestive increase in activity of digestive enzymes (Hinks & Erlandson, 1994; Lazarevic, 2000).

As the ability of B. suppressaria and Et. magnifica to utilize leaves of C. sinensis is largely dependent on three basic digestive enzymes viz. amylase, protease and lipase, these have been quantified in the salivary secretions and midgut of the larvae of both the pests. Further, an attempt has been made to relate and compare the enzyme quantity with the nutritional indices of these pests. Such information on digestive enzymes vis a vis food utilization can help contemplation of control of these pests through use of enzyme inhibitors and allelochemicals under host-plant resistance programmes.

MATERIAL AND METHODS

A commonly planted high yielding tea clone of Assam x Cambod origin was provided as food for the rearing of the pest larvae in a transparent container (27.5x27cm) in aseptic conditions. Freshly emerged adults in laboratory were sexed, paired and allowed to mate in glass chimneys (19.5 cm x 8.5 cm), containing a twig with tea plant immersed in water of a conical flask to elicit oviposition. Larvae hatched from these eggs were reared at 28 ± 2°C, 75 ± 5% relative humidity and 12 hours L: D.

Nutritional ecology:

In order to find out the daily food consumption and weight changes in final larval instar freshly ecdyosed Vth instar stages, 10 replicates each of B. suppressaria and Et. magnifica were monitored under controlled conditions (as mentioned earlier) in BOD incubator. Daily-preweighed fresh food (tea leaves with twig) was offered to each individual kept in (26cm x 8.5cm) plastic containers. After 24 hours of feeding, leftover food and excrement were removed, oven dried and weighed. Dry weight of the actual food consumed was calculated by subtracting the dry weight of the leftover food from the dry weight of an equivalent amount of the food offered. Dry weight change of larva was calculated by drying a larva of similar weight in the oven at 50°C for 72 hours. Control was run concurrently by keeping tea leaves with their twig immersed in water of a conical flask having its mouth plugged with a cotton ball. Gravimetric (dry mass) technique was used to determine food consumption, and post ingestive food utilization efficiencies after Waldbauer (1968), Slansky & Scribe (1985), Petrushewicz & MacFadyen (1970), Muthukrishnan & Pandian (1987) and Farrar et al. (1989).
Activity of digestive enzymes:

Enzyme extraction was made from laboratory-reared Vth instar larvae of *B. suppressaria* and *E. magnifica*. The dissections were carried out in an ice-cold sodium phosphate buffer (0.1 M, pH 7.0). Salivary gland and midgut were homogenized individually in fresh sodium phosphate buffer containing 0.01 M each of EDTA (Ethylene diamine tetra acetic acid) and 0.5% Triton X-100. The homogenate was centrifuged at 10,000g for 15 min at 4°C. The supernatant of this preparation were used for measuring enzyme activities and stored at –20°C for future use.

Amylase assay:

Amylase activity in the salivary gland and midgut was determined after the method of Madhusudhan et al. (1994) followed by the method of Sadasivam & Manickam (1996) using dinitrosalicylic acid reagent; and quantification of enzyme product was deducted from a standard curve prepared using various concentration of maltose alone at 520 nm using UV-Vis spectrophotometer. The enzyme activity was expressed as µM / min/ mg of protein.

PROTEASE ASSAY:

Proteolytic activity was assayed after the methods of Kunitz (1947) modified by Jayaraman (1981). 1% (w/v) casein was used as the substrate. 1 ml of casein prepared in 0.1 N NaOH was incubated with equal volume of enzyme. After incubation for one hour, the reaction was terminated by the addition of 10% TCA and the acid-soluble peptides were quantified using the biuret reagent at 520 nm using UV-Vis spectrophotometer. The enzyme activity was expressed as µg / mg of protein.

LIPASE ASSAY:

Lipase activity was measured following the method of Sadasivam & Manickam (1996). The enzyme activity was calculated as milliequivalent activity of free fatty acid / min/ g sample.

RESULTS AND DISCUSSION

B. suppressaria and *E. magnifica* showed considerable changes in the quantity of food ingested and development of body mass but with similar trends. Despite a greater quantity of leaf consumed (in total) by *E. magnifica*, the relative consumption rate (RCR) value of *B. suppressaria* was recorded to be higher. Such a difference may be due to quality of leaf consumed. Leaves of different plants / varieties differ
in their suitability as insect food because of variations in nutrient content, water content, type and concentration of secondary plant compounds and degree of sclerophyll (toughness / fibre) (Gullan & Cranston, 1994). *B. suppressaria* consumed younger leaves of upper tier and *Et. magnifica* preferably fed more on mature leaves of middle tier of a tea bush. A better consumption rate of *B. suppressaria* is possibly due to consumption of leaves of higher nutritional quality, in which the percentage of nitrogen and moisture is more, than the mature leaves consumed by *Et. magnifica*. In a similar finding Scribe & Fenny (1979) showed that Swallowtails had a higher consumption rate on nitrogen and moisture-rich forbs than when feeding on tree foliage having relatively less values of nitrogen and moisture. In the two species, efficiencies of ingested (ECI) and digested food (ECD), showed that *B. suppressaria* had lower ECI and ECD values as compared to *Et. magnifica* (Table 1). This could be explained by a higher metabolic cost of processing the young leaves, which contain more allelochemicals. The young leaf of tea plants contains high levels of plant allelochemicals like polyphenolic compounds, caffeine (Roberts, 1962; Banerjee, 1993). These secondary plant compounds are associated with induction mechanisms at the level of digestion and detoxification. A reduction in ECD associated with allelochemical ingestion is a common phenomenon (Koul et al., 1990; Appel & Martin, 1992). Secondary plant compounds often inhibit growth and development of insects (Todd et al., 1971; Lindroth et al., 1988; Ayres et al., 1997). Secondary plant substances also frequently act at the behavioural level of insects as deterrents and feeding inhibitors (Kraft & Denno, 1982; Kelly & Curry, 1991; Van Dam et al., 1995). The above hypothesis is tested by a comparison of the life histories of two folivores in question on young and mature tea leaves and their adaptations to the different leaf quality and quantity.

The maintenance cost of *B. suppressaria* was higher in comparison with *Et. magnifica*. The increase in food consumption rate that enhanced the cost of maintenance of *B. suppressaria* than *Et. magnifica* may be due to its food quality. In *B. suppressaria* a large part of the ingested food is presumably utilized in maintaining of basal metabolism, resulting in low conversion for growth. In *Pseudaletia unipuncta*, similar phenomenon was observed by Mukerji & Guppy (1970). The suboptimal availability of nutrient often nitrogen or water reduces growth rate, increases maintenance costs and causes a lower metabolic efficiency (Schoonhoven et al., 1998). The production index of *Et. magnifica* was found to be higher than *B. suppressaria* and this might be due to the better suitability of the mature tea leaf as food in supporting the advanced life stages of the former species.

Study on approximate digestibility (AD) showed a higher value in *B. suppressaria* as compared with that of *Et. magnifica*. A higher AD and assimilation are known to be influenced by quality, specially of nitrogen, water and toxin contents of the plant food (Muthukrishnan &
Pandian, 1987). The increased AD in response to tea leaf quality could also be as a result of changes at the levels of digestive enzymes. Higher activity of digestive enzymes in relation to food composition have been reported by Hinks & Erlandson (1994) and Ishaaya & Swirski (1976). Deficiencies in the quality of a food resource can be balanced by various mechanisms of nutritional compensation as is evident in *Et. magnifica* that overcome poor food quality by increase in their feeding period and better food conversion efficiency (Fig. 1 and Table 1). Starch is the main reserve polysaccharide in tea (Banerjee, 1993). The amylase activity found both in salivary and midgut of *B. suppressaria* indicates greater digestion of polysaccharides in midgut than its break down at the time of ingestion in the oral cavity *vis a vis* in *Et. magnifica* amylase activity of equal quantity indicates almost similar polysaccharide digestion at salivary and midgut levels. This is possibly an adaptation for better digestion of starch through an increase of the feeding period and higher conversion efficiencies (Table 2). In unprocessed tea, protein makes upto 20% of the dry weight (Mulky, 1993). The protease activity in oral as well as midgut of *B. suppressaria* and *Et. magnifica* ensure an active protein digestion at both the levels. Nevertheless a higher protease activity in salivary secretion of *Et. magnifica* possibly ascertains a better digestion of the available protein of mature leaves, starting in the oral cavity followed by midgut (Table 2). The activity of lipase is much reduced than the other two digestive enzymes. In *B. suppressaria* the lipase activity is significantly higher than that of *Et. magnifica* both at salivary and midgut levels possibly because the former feeds on young tea leaves in which lipid make up 4% to 9% of the dry matter (Roberts, 1974; Mahanta et al., 1985). The lipase activity has also been reported in the midgut of *Manduca sexta* (Rubio et al., 2000) and *Spilosoma obliqua* (Anwar & Saleemuddin, 1997). The digestive enzymes are mainly reported from the midgut of different insects (Hori et al., 1981; Lenz et al., 1991). The present study on feeding biology and digestive enzyme activities reveals different exploitation strategies by the two folivores of two qualities of tea leaves (young and mature). Further, it establishes that *Et. magnifica* has a better adaptive flexibility than that of *B. suppressaria* because of its greater efficiency in converting both ingested and digested food. The study throws-up future research opportunities in non-conventional management of these two pests based on digestive enzyme inhibitors and other HPR strategies, which would be a necessity in developing IPM – programme of tea.
LITERATURE CITED

Lazarevic, J. 2000. Physiological and genetic mechanism of adaptation to unsuitable nutrition in the gypsy moth Lymantria dispar L. Dissertation. Belgrade, Yugoslavia, Faculty of Biology, University of Belgrade

Fig. 1. Relation of dry mass (mg) changes (left ordinate) and daily food consumed (mg) (right ordinate) during development of Vth instar larvae of \emph{Buzura suppressaria} and \emph{Eterusia magnifica} (D = day)

Table 1. Nutritional Indices of \emph{Buzura suppressaria} and \emph{Eterusia magnifica} (Vth instars) on tea leaf (Mean ± SE).

<table>
<thead>
<tr>
<th>Vth instars</th>
<th>RCR</th>
<th>RGR</th>
<th>ECI</th>
<th>ECD</th>
<th>AD</th>
<th>Ment. Cost</th>
<th>Prodn. Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emph{B. suppressaria}</td>
<td>0.630a</td>
<td>0.008</td>
<td>12.355a</td>
<td>24.761a</td>
<td>49.904a</td>
<td>3.056a</td>
<td>0.247a</td>
</tr>
<tr>
<td>\emph{E. magnifica}</td>
<td>0.574b</td>
<td>0.004</td>
<td>13.879b</td>
<td>31.241b</td>
<td>44.453b</td>
<td>2.212b</td>
<td>0.312b</td>
</tr>
</tbody>
</table>

Means followed by the same letter are not significantly different using t-test at p > 0.05
Table 2. Digestive enzymes of salivary gland (SG) and midgut (MG) homogenate of *Buzura suppressaria* and *Eterusia magnifica* (Mean ± SE) (n = 10)

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>B. suppressaria</th>
<th>E. magnifica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(µM. mg protein⁻¹. min⁻¹)</td>
<td>0.318±0.71 aA</td>
<td>0.331±0.37 bA</td>
</tr>
<tr>
<td>Protease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Amount of protein, casein, utilized)</td>
<td>0.405±0.62 bB</td>
<td>0.348±0.63 aB</td>
</tr>
<tr>
<td>Lipase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Activity meq. / min /g of sample)</td>
<td>38.22±0.19 aA</td>
<td>44.45±0.46 aB</td>
</tr>
</tbody>
</table>

Difference in lower case letters in columns indicate significance difference of mean using t-test at p> 0.001; Difference in upper case letters for each enzyme in rows indicate significance difference of mean using t-test at p> 0.001
CONTRIBUTIONS TO THE KNOWLEDGE OF TURKISH AUCHENORRHYNCHA (HOMOPTERA, FULGOROMORPHA AND CICADOMORPHA, EXCL. CICADELLIDAE) WITH A NEW RECORD, SETAPIUS KLAPPERICHIANUS DLABOLA, 1988

Emine Demir*

* Gazi University, Faculty of Science & Arts, Department of Biology, 06500 Teknikokullar, Ankara, TURKEY. E-mail: eminedemird@yahoo.com

ABSTRACT: In this study, 2721 samples of Auchenorrhyncha (excl. Cicadellidae) species collected from Antalya region in south-west Turkey during field studies in the years 1999 and 2001-2003 are examined. 74 species belonging to 13 families are found to be distributed in the region. Among these, 14 species belong to the Family Cixidae, 13 species to Delphacidae, 1 species to Meenoplidae, 1 species to Achilidae, 6 species to Dictyopharidae, 1 species to Tropiduchidae, 6 species to Tettigometridae, 2 species to Caliscelidae, 11 species to Issidae, 1 species to Platidae, 9 species to Cicadidae, 7 species to Cercopidae and 2 species to Membracidae. Distribution of these species in Turkey and their host plants are given along with their locality records. 47 of these examined species are new records for Antalya and Setapius klapperichianus Dlabola, 1988 is a new record for Turkey’s fauna.

KEY WORDS: Homoptera, Fulgoromorpha, Cicadomorpha, fauna, new record, Turkey.

The province of Antalya, which is selected as the survey area, is located on the Mediterranean coastline in southwest of Turkey, between 29°15'-32°36' eastern longitudes and 36°06'-37°27' northern latitudes. The elevation ranges between 0 and 3070m This province is
important because of its biological diversity with four national parks and three nature protection areas; namely, Olympos Beydağları Coastal National Park, Termessos Gullik Mountain National Park, Köprülü Kanyon National Park, Altinbeşik National Park, Çığlkara Nature Protection Area, Dibek Nature Protection Area and Alacadağ Nature Protection Area. 40 Auchenorrhyncha (excl. Cicadellidae) species are found to be distributed in the survey area, as a result of compilation of the records in the studies of the authors mentioned above.

Climate of the Study Area:
The region is under the influence of a Mediterranean climate that is an outer tropical climate, in which photoperiodism is daily and seasonal, precipitation occurs mostly in cold or relatively colder seasons, summer is the dry period and summer drought coincides with maximum summer temperature. All the stations except Gazipaşa (796.3 mm), which is the easternmost station, receive precipitation over 1000mm, according to Akman (1995). On the coastline, 60-65% of precipitation is received in winter and 0.5-2% in summer.

Vegetation of the Survey Area:
There are communities dominated by Pinus brutia forest, garrigue and maquis along the coastline at approximately up to 1000 m above sea level, although they are damaged by human activity in many places. Pinus brutia can sometimes be seen above 1000 meters and on the coast it is mixed with Pinus pinea. Ceratonia siliqua, Pistacia lentiscus, Euphorbia dendroides, Myrthus communis, Clematis cirrhosa, Rubia tinctoria, Teucrium creticum and Capparis spinosa are examples of common characteristic species of the coastline. Examples of common characteristic species of the zone just above the coastline are Quercus coccifera, Pistacia terebinthus ssp. palaestina, Crataegus aronia ssp. aronia, Fontanesia phillyreoides, Rhamnus oleoides ssp. graecus, Arbutus andrachne, Melica eligulata, Eryngium fałeatum and Rubia tenuifolia. On the eastern half of the region at elevations of 1500m and higher, there are forests comprising of Cedrus libani, Abies cilicica, Pinus nigra ssp. pallasiana, Quercus infectoria ssp. boissieri, Quercus libani, Juniperus excelsa, and Juniperus drupacea. The western parts of the region are covered with Cedrus libani forests at elevations of 1500m and higher. Although cedars here show floristic structure, blackpine forests are extremely poor. Lonicera nummulariifolia ssp. glandulifera, Digitalis cariensis and Acer hyrcanum ssp. sphaerocaryum are examples of characteristic species in this part Akman (1995).

MATERIALS AND METHODS

Field studies in 143 different localities were carried out during the months of March-October in the years 1999 and 2001-2003. In this
study, 2721 adult Auchenorrhyncha (excl. Cicadellidae) samples were collected by sweeping the plants with a wooden shaft net and the of samples collected from only one species of plant were determined. Homopterans, found in the net after sweeping were collected with an aspirator. The samples in the aspirator were then killed by ethyl acetate in a jar and put in standard envelopes and prepared according to the standard methods to produce museum material. The studied samples are preserved in the collection of the author.

RESULTS

There were found to be 74 species of Auchenorrhyncha (excl. Cicadellidae) in the survey area. These are listed below, together with their distribution in Turkey and the plants found to be their host. Out of these examined species 47 are new records for Antalya and *Setapius klapperichianus* Dlabola, 1988 is a new record for Turkey.

Family: Cixiidae Spinola, 1839

Cixius (Ceratocixius) pallipes Fieber, 1876

Materials: Manavgat, Değirmenli, 04.08.1999 1♀ on *Salix*. **Distribution in Turkey:** Adana, Adıyaman, Afyon, Ankara, Antalya, Artvin, Aydın, Balıkesir, Bartın, Çanakkale, Çankırı, Diyarbakır, Düziçe Erzincan, Erzurum, Eskişehir, Giziantepe, Giresun, Gümüşhane, Hakkari, Iğdır, İzmir, Karaman, Kırşehir, Konya, Kütahya, Kahramanmaraş, Malatya, Mardin, Muğla, Ordu, Sakarya, Samsun, Tokat, Şanlıurfa, Yozgat (Lodos & Kalkandelen, 1980a; Dlabola, 1981; Kalkandelen, 1988).

Remarks: Known to Antalya.

Cixius (Ceratocixius) remotus Edwards, 1888

Materials: Manavgat, YukarııĢıklar-Tilkiler, 460 m., 14.05.2001 1♂1♀ on *Cistus creticus*. **Distribution in Turkey:** Adana, Erzurum, Konya (Kalkandelen, 1988). **Remarks:** New for Antalya.

Duilius seticulosus (Lethierry, 1874)

Materials: Serik: Aspendos, 18.07.2002 14♂2♀; Manavgat: Taşağıl, 60 m., 27.08.2003 11♂5♀; Hacıobası, 26.08.2003 6♂ on *Tamarix*. **Distribution in Turkey:** Antalya, Erzincan, Kahramanmaraş, Nevşehir (Lodos & Kalkandelen, 1988; Kalkandelen, 1989). **Remarks:** Known to Antalya.

Eumecurus gyaurus (Dlabola, 1957)

Materials: İbradı: Üzümdere, 470 m., 18.08.1999 1♀; Düzlerçamı, 280 m., 22.07.2001 1♀ on maqius shrubs. **Distribution in Turkey:** Adana, Antalya (Dlabola, 1957; Kalkandelen, 1989b). **Remarks:** Endemic to Turkey and known to Antalya.

Pentastiridius (s. str.) leporinus (Linnaeus 1761)

Materials: Finike, 06.06.2001 1♀. It has been collected from weeds in *Vitex*-shrubs. **Distribution in Turkey:** Antalya, Konya, Mersin, Toros Dağları. (Linnaevouri, 1965; Dlabola, 1981; Kalkandelen, 1990). **Remarks:** Known to Antalya.
Reptalus (s. str.) horridus (Linnavuori, 1962)

Materials: Manavgat: Demirciler, 10 m., 17.08.1999 2♂; Demirciler, 40 m., 24.07.2001 1♂ 1♀; Akseki: Murtiçi, 540 m., 25.07.2001 1♂; İbradı: Başlar, 1440 m., 21.08.2002 2♂ 2♀ on Quercus. **Distribution in Turkey:** Adana, İzmir (Kalkandelen, 1994). **Remarks:** New for Antalya.

Reptalus oleae Dlabola, 1987

Materials: Manavgat: Tilkiler, 470 m., 14.05.2001 1♂; Beşkonak, Köprüülü Kanyon, 495 m., 07.06.2001 1♂ 3♀; Demirciler, 105 m., 18.05.2002 4♂ 2♀; Demirciler, 105 m., 21.06.2002 1♂ 1♀; Korkuteli: Korkuteli-Kargalık, 1060 m., 06.06.2001 1♂; Gündoğmuş: Güneyçik, 210 m., 22.06.2002 1♀; Akseki: Güçlüköy, 575 m., 22.06.2002 1♀ on Arbutus andrachne, Pinus brutia, Celtis australis and Verbascum. **Distribution in Turkey:** Antalya; Kaş, Mersin, Muğla. (Kalkandelen, 1994). **Remarks:** Endemic to Turkey and known to Antalya.

Setapius klapperichianus Dlabola, 1988

Materials: Manavgat: Bucakşeyhler, 24.07.1999 2♀; Manavgat, 21.07.1999 1♀; Manavgat, 10.08.1999 1♂ 1♀; Manavgat, 10 m., 20.07.1999 1♀; Değirmenli, 04.08.1999 1♀; Demirciler, 65 m., 21.07.1999 1♂; Manavgat, 18.09.1998 2♂ 3♀; Beşkonak, 145 m., 07.06.2001 2♂; Örenşehir, 15.10.2001 1♀; Çakış, 16.10.2001 1♂; Manavgat, 10 m., 07.09.2001 1♂ 4♀; Kemer: Böğürtlenözü, 18.04.2001 1♂ 3♀; Kemer, 06.06.2001 1♂; Alanya: Okurcalar, 20.05.2002 1♀; Serik: Dikmen, 18.07.2002 1♂; Finike: Yeşilyurt, 18.04.2001 1♂ 2♀. It has been collected from weeds in fields and Pinus brutia forest. **Distribution in Turkey:** This species is the first record in Turkey. **Remarks:** New for Turkey.

Pentastira major Kirschbaum, 1868

Distribution in Turkey: Adana, Ankara, Antalya; Alanya, Bolu, Çankırı, Çorum, Diyarbakır, Gaziantep, Giresun, Hatay, Isparta, İzmir, Konya, Karaman, Kahramanmaraş, Manisa, Mardin, Muş, Niğde, Samsun, Tekirdağ, Tokat, Şanlıurfa, Van, Yozgat (Linnavuori, 1965; Lodos & Kalkandelen, 1980a; Kalkandelen, 1993). **Remarks:** Known to Antalya.

Pentastira megista Emeljanov, 1978

Materials: İbradı: Ormana, 1000 m., 21.08.2002 1♂ on maqius shrubs. **Distribution in Turkey:** Adana, Ankara, Çankırı, Diyarbakır, Erzurum, Konya, Karaman, Muş, Niğde, Yozgat (Kalkandelen, 1993). **Remarks:** New for Antalya.

Hyalesthes luteipes Fieber, 1876

Hyalesthes mavromoustakisi Dlabola 1959
Materials: Gündoğmuş: Serinyaka, 700 m., 25.07.1999, 1♀; Korkuteli: Korkuteli, 30 km W, 670 m., 28.08.2003 2♀ on weeds and maqius shrubs.
Distribution in Turkey: Diyarbakır (Lodos & Kalkandelen, 1980a).
Remarks: New for Antalya.

Hyalesthes mlokosiewiczi Signoret, 1879
Remarks: New for Antalya.

Hyalesthes obsoletus Signoret, 1865

Family: Delphacidae Leach, 1815
Asiraca clavicornis (Fabricius, 1794)

Kelisia ribauti Wagner, 1938

Kelisia yarkonensis Linnavuori, 1962
Materials: Manavgat: Boztepe, Alara, 15.10.2001 1♂; Bucakşeyhler, 70 m., 23.04.2002 1♂; Kale, Eseler, 55 m, 15.05.2001 1♂. It has been collected from weeds in fields. Distribution in Turkey: Konya (Asche, 1982). Remarks: New for Antalya.
Tropidocephala tuberipennis (Mulsant et Rey, 1855)

Materials: Manavgat: Bucakseyhler, 24.07.1999 1♀; Bucakseyhler, 13.08.1999 2♀; Hacacobasi, 14.10.2001 1♂; Demirciler, 40 m., 20.06.2002 43♂35♀; Kemer: Kemer, 06.09.2002 1♀. On Graminae. **Distribution in Turkey:** Adana, Antalya, Aydin, Mersin (Dlabola, 1957; Asche, 1982). **Remarks:** Known to Antalya.

Chloriana ponticana Asche, 1982

Materials: Gazipaşa: Çalıpınar-Kahyalar, 20 m., 20.05.2002 1♀ on Arundo donax. **Distribution in Turkey:** Antalya (Asche, 1982). **Remarks:** Known to Antalya.

Chloriana flaveola Lindberg, 1948

Materials: Manavgat: Demirciler, 65 m., 15.04.2001 1♀; Kumluca: Kumluca, 06.06.2001 6♀; Alanya: Konaklı, 25 m, 24.04.2002 1♀; Düzlerçami: 280 m., 22.07.2001 1♀ on Arundo donax. **Distribution in Turkey:** Adana (Dlabola, 1957). **Remarks:** New for Antalya.

Laodelphax striatellus (Fallen, 1826)

Materials: Manavgat: Bucakseyhler, 13.08.2002 1♂2♀; Bucakseyhler, 18-28.06.1997 1♀; Beşkonak, 145 m., 07.06.2001 5♀2♂; Demirciler, 65 m., 05.06.2001 1♂; Demirciler, 20 m., 18.05.2002 2♂2♀; Demirciler, 40 m, 18.08.2001 6♂13♀; Manavgat, 10 m, 07.09.2001 3♂5♀; Alanya: Obaköy, 25 m., 12.08.1999 1♂3♀; Elmali: Akçag, 1100 m., 28.07.1999 1♂; Kemer: Kemer, 06.06.2001 8♀4♂; Böğürtlenözü, 18.04.2001 5♂8♀; Çamuyuva, 18.04.2001 2♂11♀; Kemer, 06.09.2002 1♂1♀; Finike: Turunçova, 50 m., 06.06.2001 6♂13♀; Serik: Aspendos, Köprüçayı, 16.10.2001 2♀; Camili, 26.07.2001 6♀4♂; Güllük Dağı: Araştırma Ormanı, 750 m., 21.05.2002 1♂; Korkuteli: Datköy, 960 m., 13.07.2002 15♂16♀; Kale: Köşkerler, 240 m., 15.05.2001 3♂9♀; Kumluca, Kavakdibi, 130 m, 24.06.2002 7♂; Gazipaşa: Macarköy, 09.09.2001 5♂1♀; Kaş: Kalkan, Üzümlü, 285 m, 15.05.2001 4♂5♀. It has been collected from weeds in Pinus brutia forest and fields. **Distribution in Turkey:** Adana, Adıyaman, Ankara, Antalya, Bilecik, Bitlis, Diyarbakır, Erzincan, Erzurum, Iğdır, İzmir, Kahramanmaraş, Kars, Malatya, Malatya, Mersin, Muğla, Nevşehir, Niğde, Ordu, Rize, Siirt (Dlabola, 1971, 1981; Lodos & Kalkandelen, 1980b; Asche, 1982; Güçlü, 1996). **Remarks:** Known to Antalya.

Sogatella vibix (Haupt, 1922)

Materials: Kaş: Kalkan, Yeşilköy, 29.07.1999 1♂; Manavgat: Bucakseyhler, 15-26.08.1997 1♂; Çakış, 16.10.2001 2♀; Örenşehir, 15.10.2001 1♀(Graminae); Taşağıl, Kilimli, 40 m, 08.09.2002 1♂5♀; İlica, 07.09.2001 2♂; Demirciler, 40 m, 18.08.2002 1♂2♀; Gazipaşa: Çalıpınar-Kahyalar, 20 m., 20.05.2002 1♂; Asarık, 24.04.2002 3♀18♀; Finike: Yeşilyurt, 18.04.2001 3♂1♀; Erenkavak, 65 m, 24.06.2002 1♂4♀; Yeşilyurt, 06.09.2002 3♂7♀; Serik: Dikmen, 26.07.2001 1♂8♀; Aksu: Topallar, 26.07.2001 2♂13♀; Kale: Eseler, 55 m, 24.06.2002; 6♂15♀; Kemer: Böğürtlenözü, 21.08.2001 5♂2♀; Kemer, 06.09.2002 2♂; Alanya: Konaklı, 25 m, 24.04.2002 4♂. It has been collected from weeds in Pinus brutia forest and fields. **Distribution in Turkey:** Ankara, Aydin, Bitlis, Diyarbakır, Erzurum, Hatay, Mersin, Van (Dlabola, 1971, 1981; Güçlü, 1996). **Remarks:** New for Antalya.

Muirodelphax aubei (Perris, 1857)

Toya propinqua (Fieber, 1866)
Materials: Manavgat: 21.07.1999 1♂1♀; Bucakşeyhler, 24.07.1999 1♂2♀; Demirciler, 10 m., 17.08.1999 1♂; Belenobasi, 130 m., 15.04.2001 2♀; Beşkonak, 145 m., 07.06.2001 3♂♀; Demirciler, 40 m., 06.06.2001 1♂; Bucakşeyhler, 70 m., 23.04.2002 2♂; Demirciler, 20 m., 18.05.2002 1♂; Demirciler, 105 m., 21.06.2002 1♂; Manavgat, 18.09.1998 1♂; Demirciler, 40 m., 20.06.2002 3♀; Alanya, Kargıcak, 09.09.2001 3♀; Serik, Camili, 20.08.2001 1♂1♀; Manavgat, Demirciler, 40 m., 18.08.2001 1♂. It has been collected from weeds in Pinus brutia and fields. Distribution in Turkey: Adana, Afyon, Amasya, Ankara, Antalya, Aydın, Çanakkale, Denizli, Diyarbakır, Erzurum, Gaziantep, Hatay, Kastamonu, Mardin, Mersin, Muğla, Ordu, Samsun, Siirt, Sinop (Dlabola, 1957, 1971; Linnavuori, 1965; Lodos & Kalkandelen, 1980b; Asche, 1982; Güçlü, 1996). Remarks: Known to Antalya.

Pseudaraeopus lethierryi (Mulsant et Rey, 1879)

Delphacodoides anaxarchi (Muir, 1926)
Materials: Manavgat, Bucakşeyhler, 13.08.1999 1♂; Alanya, Kargıcak, 09.09.2001 3♀; Serik, Camili, 20.08.2001 1♂1♀; Manavgat, Demirciler, 40 m., 18.08.2001 1♂. It has been collected from weeds in Pinus brutia forest. Distribution in Turkey: Antalya, Mersin (Dlabola, 1957, 1981; Asche, 1982). Remarks: Known to Antalya.

Perkinsiella dorsata (Melichar, 1905)
Materials: Manavgat, 18.09.1998 1♂; Manavgat, 10.08.1999 1♂; Demirciler, 40 m., 20.06.2002 2♀; Karaoğz, 70 m, 18.08.2001 1♂; Kemer, Çamyuva, 18.04.2001 3♀; Aksu, Topallar, 26.07.2001 1♂2♀; Alanya, Okurcalar, 09.09.2001 2♀. It has been collected from weeds in Pinus brutia forest. Distribution in Turkey: Mersin, Muğla (Kalkandelen, 1980; Dlabola, 1981; Asche, 1982). Remarks: New for Antalya.

Family: Meenoplidae Fieber, 1872
Meenoplus albosignatus Fieber, 1866
Materials: Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 1♂; Gündoğmuş, Serinyaka, 625 m., 22.06.2002 1♂; Gazipaşa, Macarköy,

Family: Achilidae Stal, 1866

Cixidia pilatoi D'Urso & Guglielmino, 1995

Materials: Manavgat, Demirciler, 105 m., 18.05.2002 2♂3♀ on *Pinus brutia* and *Myrthus communis*. Distribution in Turkey: Adana (Linnavuori, 1965). Remarks: New for Antalya. The record of Adana has been reported as *C. marginicollis*. This record possibly belongs to *C. pilatoi*.

Family: Dictyopharidae Spinola, 1839

Callodictya krueperi (Fieber, 1876)

Materials: Gündoğmuş, Çiçekoluk, 960 m., 25.07.1999 1♀; Akseki, Murtiçi, 540 m., 25.07.2001 5♂7♀; Manavgat, Demirciler, 40 m., 24.07.2001 2♂; Demirciler, 40 m., 17.07.2002 1♂; Serik, Sariabah, 18.07.2002 1♀; Kaş, Kemerköy, 260 m., 13.07.2002 2♀; Dirgenler, 265 m., 13.07.2002 1♂; İbradı, Başlar, 1440 m., 21.08.2002 1♂3♀ on *Quercus*, *Myrthus communis* and *Centaurea*.

Dictyophara (s. str.) *asiatica* Melichar, 1912

Materials: Kaş, Beldibi, 1400 m., 29.07.1999 1♂3♀; Manavgat, Bucakşeyhler, 45 m., 24.07.1999 1♂; Demirciler, 10 m., 17.08.1999 1♂1♀; Bucakşeyhler, 13.08.1999 1♀; Alanya, Obaköy, 25 m., 12.08.1999 1♀; Gündoğmuş, Çiçekoluk, 960 m., 25.07.2001 8♂17♀; Akseki, Murtiçi, 540 m., 25.07.2001 4♀; Manavgat, Demirciler, 40 m., 24.07.2001 3♂5♀; Bucakşeyhler, 45 m., 19.07.2001 3♂1♀; Alanya, Kargıcak, 21.07.2001 2♂; Manavgat, Demirciler, 20 m., 21.06.2002 1♀; Demirciler, 40 m., 20.06.2002 1♂2♀; Demirciler, 40 m., 17.07.2002 1♀; Kaş, Dirgenler, 265 m., 13.07.2002 1♀; Güllük Dağı, Araştırma Ormani, 750 m., 19.07.2002 1♂; Serik, Dikmen, 18.07.2002 1♀; Hisarçandır, 770 m., 20.08.2002 1♂1♀; Kemer, Çamyuva, 20.08.2002 1♀; Olimpos Milli Parkı, 20.08.2002 1♂; Sarıçınar Dağı, 20.08.2002 2♀; Manavgat, Hacıobası, 26.08.2003 1♀ on *Verbascum, Pistacia, Centaurea, Phlomis, Fontanesia philliyreoides, Quercus, Ficus carica, Myrthus communis, Vitex agnus-castus and Populus*. Distribution in Turkey: Adana, Amasya, Ankara, Aydin, Bahkesir, Bilecik, Bolu, Burdur, Denizli, Diyarbakır, Elazığ, Eskişehir, Erzincan, Isparta, İzmir, Kırklareli, Kütahya, Manisa, Muğla, Sakarya, Tunceli, Urfa, Van (Dlabola, 1957, 1981; Linnavuori, 1965; Lodos & Kalkandelen, 1980c). Remarks: New for Antalya.

Dictyophara iranica Linnavuori, 1962

Dictyophara (s. str.) *lindbergi* Metcalf, 1955

Materials: Manavgat, 10 m., 20.07.1999 1♀; Serik, Dikmen, 18.07.2002 2♂1♀; Akseki, Güneykaya, 570 m., 25.07.1999 1♂1♀; Güllük Dağı, Araştırma Ormani,
550 m., 19.07.2002 3♂1♀. It has been collected from weeds in *Pinus brutia* forest, *Ficus carica* and *Salix*. **Distribution in Turkey:** Adana, İzmir, Kütahya, Muğla, Tekirdağ (Dlabola, 1957; Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Dictyophara (Euthremma) multireticulata Mulsant et Rey, 1855
Materials: İbradi, Bağlar, 1440 m., 21.08.2002 1♀ on *Quercus*. **Distribution in Turkey:** Denizli, Van (Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Dictyophara (Chanithus) xiphias Puton, 1884
Materials: Manavgat, Demirciler, 10 m., 17.08.1999 1♂2♀; Demirciler, 40 m., 21.07.1999 1♀; Güllüük Dağı, Araştırmalar Ormanı, 750 m., 19.07.2002 1♂3♀; Gazipaşa, Macarköy, 22.08.2002 2♀. On *Phlomis, Fontanesia phillyreaeoides, Pistacia terebinthus, and Quercus*. **Distribution in Turkey:** İzmir (Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Family: Tropiduchidae Stal, 1866
Trypetimorpha occidentalis Huang et Bourgoin, 1993
Materials: Düzlerçami, 280 m., 22.07.2001 1♀. It has been collected from weeds in *Pinus brutia* forest. **Distribution in Turkey:** Ankara (Demir, 1998). **Remarks:** New for Antalya.

Family: Tettigometridae Germar, 1821
Tettigometra (Hystrigonia) hexaspina Kolenati, 1857
Materials: Korkuteli, Korus Dağı, Kartal Yaylası, 1600 m., 23.06.2002 1♂1♀; Söğütcük, 1010 m., 13.07.2002 1♀. It has been collected from weeds in fields. **Distribution in Turkey:** Ağrı, Ankara, Edirne, Gaziantepe, Isparta, Tekirdağ, Urfa (Dlabola, 1957; Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Tettigometra (Metroplaca) longicornis (Signoret, 1866)
Materials: Manavgat, YukarııĢıklar-Tilkiler, 460 m., 14.05.2001 1♂1♀; Korkuteli, Korus Dağı, Kartal Yaylası, 1600 m., 23.06.2002 1♂4♀. It has been collected from weeds in fields. **Distribution in Turkey:** Ankara, Sivas (Dlabola, 1957, 1981). **Remarks:** New for Antalya.

Tettigometra (Mitricephalus) eremi Lindberg, 1948
Materials: Manavgat, YukarııĢıklar-Tilkiler, 460 m., 14.05.2001 1♂1♀; Güllüük Dağı, Araştırmalar Ormanı, 750 m., 21.05.2002 3♂4♀; Korkuteli, Korus Dağı, Kartal Yaylası, 1600 m., 23.06.2002 8♂14♀. It has been collected from weeds in *Pinus brutia* forest, fields and *Salix*. **Distribution in Turkey:** Ankara, Aydin, Burdur, Çankakale, İzmir, Kayseri, Kocaeli, Kütahya, Manisa, Sivas, Uşak (Lodos & Kalkandelen, 1980c; Dlabola, 1981). **Remarks:** New for Antalya.

Tettigometra (Mitricephalus) leucophaea (Preyssler 1792)
Materials: Korkuteli, Söğütcük, 1010 m., 13.07.2002 5♂6♀; İbradi, Bağlar, 1440 m., 21.08.2002 1♀; Elmalı, Çığkara, 1600 m., 28.08.2003 1♀. It has been collected from weeds in *Juniperus-Abies cilicia* forest and *Quercus*.
Distribution in Turkey: Adana, Ankara, Adıyaman, Ağrı, Bilecik, Bolu, Burdur, Çanakkale, Çankırı, Çorum, Diyarbakır, Edirne, Elazığ, İstanbul, İzmir, Mardin, Nevşehir, Sivas, Tekirdağ, Urfa (Dlabola, 1957; Linnavuori, 1965; Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Tettigometra (s. str.) sulphurea Mulsant et Rey, 1855

Materials: Manavgat, Belenobası, 130 m., 15.04.2001 1♀; Bucakşeyhler, Seleukeia, 250 m., 23.04.2002 1♀; Bucakşeyhler, 70 m., 23.04.2002 1♂1♀. It has been collected from weeds in *Pinus brutia* forest. **Distribution in Turkey:** Adana, Ankara, Artvin, Aydın, Bilecik, Bursa, Diyarbakır, Elazığ, İzmir, Kütahya, Nevşehir, Sakarya, Urfa, Uşak, Van (Dlabola, 1957; Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Tettigometra (s. str.) virescens (Panzer, 1799)

Materials: Kemer, Ovacık, 1150 m., 20.08.2002 1♂. It has been collected from weeds in *Cedrus libani* forest. **Distribution in Turkey:** Adana, Adıyaman, Ankara, Bursa, Diyarbakır, Elazığ, Erzincan, Gaziantep, Hatay, Iğdır, Mardin, Tunceli, Urfa, Van (Fahringer, 1922; Lodos & Kalkandelen, 1980c). **Remarks:** New for Antalya.

Family: Caliscelidae Amyot & Serville, 1834

Bruchoscelsis peculiaris (Horvath, 1904)

Materials: Manavgat, Demirciler, 40 m., 20.06.2002 1♀. On Gramineae. **Distribution in Turkey:** Ankara, Yozgat (Dlabola, 1957; Kartal, 1985). **Remarks:** New for Antalya and endemic to Turkey.

Ommatidiotus longiceps Puton, 1896

Materials: Serik, Dikmen, 18.07.2002 1♀. It has been collected from weeds in *Pinus brutia* forest. **Distribution in Turkey:** Diyarbakır, Mardin, Urfa (Lodos & Kalkandelen, 1988). **Remarks:** New for Antalya.

Family: Issidae Spinola, 1839

Mycterodus (s. str.) lodosicus Dlabola, 1980

Materials: Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 3♀; Güllük Dağı, 540 m., 22.07.2001 2♂; Araştırma Ormani, 550 m., 19.07.2002 1♂; Araştırma Ormani, 750 m., 19.07.2002 1♂ on *Phlomis*, *Quercus* and *Cytisus laburnum*. **Distribution in Turkey:** Aydın (Dlabola, 1980). **Remarks:** New for Antalya and endemic to Turkey.

Mycterodus (Comporodus) spinicordatus (Dlabola, 1983)

Materials: Manavgat, Beşkonak, Köprülı Kanyon, 495 m., 07.06.2001 10♂6♀; Gündoğmuş, Güneycik, 210 m., 08.06.2001 1♂; Gazipaşa, Kahyalar, 22.08.2002 1♂; Manavgat, Beşkonak, Köprülı Kanyon, 495 m., 27.08.2003 1♂ on *Arbutus andrachne*, *Ceratonia siliqua* and *Nerium oleander*. **Distribution in Turkey:** Antalya (Dlabola, 1983). **Remarks:** Endemic to Turkey and known to Antalya.

Mycterodus (Comporodus) tekneticus (Dlabola, 1982)

Materials: Manavgat, Yukarıuşklär-Tilkiler, 460 m., 14.05.2001 3♂1♀; Akseki, Güçlüköy, 550 m., 21.04.2002 2♂; Gündoğmuş, Güneycik, 210 m., 21.04.2002 7♂1♀; Güneycik, 240 m., 21.04.2002 2♂1♀; Çiçekoluk, 960 m., 19.05.2002
1♂3♀; Güneycik, 210 m., 22.06.2002 3♂; Akseki, Erenkaya, 630 m., 22.06.2002 1♂; Kemer, Ovacık, 1150 m., 20.08.2002 1♀ on Phlomis, Fontanesia phillyreoides, Cercis, Arbutus andrachne and Quercus. **Distribution in Turkey:** Antalya (Dlabola, 1982). **Remarks:** Endemic to Turkey and known to Antalya.

Tshurtshurnella alanyana Dlabola, 1982

Materials: Gündoğmuş, Çiçekoluk, 960 m., 25.07.1999 8♂17♀; Manavgat, Bucakşeyhler, 24.07.1999 1♂; Demirciler, 40 m., 21.07.1999 2♂; Demirciler, 40 m., 05.06.2001 1♂; Taşağıl, Kilimli, 40 m., 03.06.2001 2♂3♀; Gündoğmuş, Çiçekoluk, 960 m., 25.07.2001 1♂; Attany, Keşefli, 21.07.2001 4♂2♀; Manavgat, Bucakşeyhler, 45 m., 19.07.2001 1♂; Demirciler, 40 m., 24.07.2001 1♂; Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 1♂; Manavgat, Demirciler, 40 m., 20.06.2002 6♂7♀; Akseki, Erenkaya, 630 m., 22.06.2002 1♂1♀; Gündoğmuş, Güneycik, 210 m., 22.06.2002 1♂; Güneycik, 210 m., 14.07.2002 1♂; Güllük Dağı, Araştırmaya Ormanlı, 750 m., 19.07.2002 2♂; Ibradi, Başlar, 1440 m., 21.08.2002 1♂1♀; Hisarçandır, 770 m., 20.08.2002 1♂3♀; Kemer, Sariçnan Dağı, 1245 m., 20.08.2002 12♂7♀ on Verbascum, Centaurea, Phlomis, Capparis, Fontanesia phillyreoides, Quercus, Graminae, Cistus creticus and Euphorbia. **Distribution in Turkey:** Antalya, Kütahya (Dlabola, 1982). **Remarks:** Endemic to Turkey and known to Antalya.

Latematium cingulatum Dlabola, 1983

Materials: Manavgat, Beşkonak, Köprüli Kanyon, 495 m., 07.06.2001 1♂; Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 10♂4♀; Güllük Dağı, 540 m., 22.07.2001 2♂; Termessos, Güllük Dağı, 900-1000 m., 21.05.2002 1♂1♀; Güllük dağı, 900-1000 m., 19.07.2002 5♂3♀; Araştırma Ormanlı, 550 m., 19.07.2002 1♂; Çığlık, 330 m., 19.07.2002 1♂ on Arbutus andrachne, Cytisus laburnum and shrubs. **Distribution in Turkey:** Antalya, Kütahya (Dlabola, 1983). **Remarks:** Endemic to Turkey and known to Antalya.

Latilica antalyica (Dlabola, 1986)

Materials: Kaş, Kemerköy, 260 m., 13.07.2002 2♂2♀ on Arbutus andrachne. **Distribution in Turkey:** Antalya, Hatay (Dlabola, 1986). **Remarks:** Endemic to Turkey and known to Antalya.

Latilica maculipes (Melichar, 1906)

Materials: Manavgat, Demirciler, 40 m., 24.07.2001 1♂1♀; Gündoğmuş, Çiçekoluk, 960 m., 25.07.2001 1♂; Serik, Sarabah, 18.07.2002 2♂1♀; Ibradi, Başlar, 1440 m., 21.08.2002 1♂ on Quercus, Myrthus communis and maquis shrubs. **Distribution in Turkey:** Antalya, Hatay, Manisa, Muğla (Linnavuori, 1965; Dlabola, 1971, 1986; Lodos & Kalkandelen, 1981a). **Remarks:** Known to Antalya and known to Antalya.

Latilica oertzeni Matsumura, 1910

Materials: Hisarçandır, 770 m., 20.08.2002 1♂; Kemer, Çamyuva, 20.08.2002 1♂. On Cistus creticus ve Myrthus communis. **Distribution in Turkey:** Antalya (Lodos & Kalkandelen, 1988). **Remarks:** Known to Antalya.

Latilica retamae (Linnavuori, 1962)

Materials: Manavgat, Demirciler, 65 m., 14.04.2001 1♂; Demirciler, 40 m., 24.07.2001 1♂; Akseki, Murtiçi, 540 m., 25.07.2001 1♂ on Quercus and maquis shrubs.
shrubs. **Distribution in Turkey:** Antalya (Lodos & Kalkandelen, 1988).

Remarks: Known to Antalya.

Agalmatium bilobum (Fieber, 1877)

Materials: Korkuteli, Yazar-İmrah, 950 m., 27.07.1999 1♀; Akseki, Erenkaya, 680 m., 25.07.1999 1♀; Alanya, Okurcalar, 12.05.2001 1♂; Gazipaşa, Çalışpinar, 25 m., 12.05.2001 6♂6♀; Manavgat, Tilkiler, 470 m., 14.05.2001 1♂1♀; Yüksekçuklar, 200 m., 14.05.2001 16♂152♀; Demirciler, 105 m., 11.05.2001 39♂♂; Taşagal, Kilimli, 40 m., 03.06.2001 1♂2♀; Beşkonak, 145 m., 07.06.2001 5♂2♀; Taşagal, Kilimli, 60 m., 03.06.2001 7♂5♀; Taşagal, Sağırın, 40 m., 03.06.2001 3♂; Taşagal, 55 m., 07.06.2001 1♀; Demirciler, 40 m., 05.06.2001 2♂2♀; Demirciler, 65 m., 05.06.2001 1♂1♀; Kemer, 06.06.2001 1♂; Gündoğmuş, Çiçekoluk, 960 m., 25.07.2001 1♂3♀; Akseki, Murutçu, 540 m., 25.07.2001 2♂; Manavgat, Demirciler, 105 m., 22.04.2002 1♂; Güllük Dağı, Araştırma Ormanı, 750 m., 21.05.2002 6♂; Alanya, Okurcalar, 20.05.2002 1♂; Gazipaşa, Çalışpinar-Kahyalar, 20 m., 20.05.2002 11♂18♀; Manavgat, Demirciler, 105 m., 18.05.2002 20♂40♀; Demirciler, 20 m., 21.06.2002 2♂; Demirciler, 105 m., 21.06.2002 2♂3♀; Demirciler, 40 m., 20.06.2002 2♂; Gündoğmuş, Güneylik, 210 m., 22.06.2002 5♂♀; Akseki, Erenkaya, 630 m., 22.06.2002 10♂11♀; Elmalı, Gökpınar, 1200 m., 13.07.2002 1♂4♀; Akçay, 1210 m., 13.07.2002 2♂; Güllük Dağı, Araştırma Ormanı, 550 m., 19.07.2002 2♂1♀; Araştırma Ormanı, 750 m., 19.07.2002 17♂♀; Finike, Dağbağ, 475 m., 13.07.2002 1♂; Çiğlık, 330 m., 19.07.2002 1♂; Korkuteli, Söğütçük, 1010 m., 13.07.2002 1♂1♀; Kaş, Kemerköy, 260 m., 13.07.2002 2♂. It has been collected from weeds in *Pinus brutia* forest, on *Asphodelus aestivus*, *Verbascum*, *Phlomis*, *Fontanesia phillyreoides*, *Cytisus laburnum*, *Vitex agnus-castus* and *Cistus creticus*. **Distribution in Turkey:** Adana, Adıyaman, Afyon, Ankara, Aydın, Balıkesir, Bilecik, Burdur, Bursa, Çanakkale, Çorum, Denizli, Eskişehir, Gaziantep, Gümüşhane, Hatay, İzmir, Kırklareli, Kırşehir, Kocaeli, Kütahya, Malatya, Manisa, Muğla, Sakarya, Sivas, Tekirdağ, Tokat, Uşak, Yozgat (Linnavuori, 1965; Dlabola, 1981; Lodos & Kalkandelen, 1981a; Kartal, 1985).

Remarks: New for Antalya.

Bubastia (Acrestia) suturalis (Fieber, 1877)

Materials: Manavgat, Bucakşeyhler, 45 m., 19.07.2001 3♂1♀; Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 1♂; Düzlerçam, 280 m., 22.07.2001 1♂; Güllük Dağı, Araştırma Ormanı, 750 m., 19.07.2002 2♂; Çiğlık, 330 m., 19.07.2002 3♂; Güllük Dağı, Araştırma Ormanı, 550 m., 19.07.2002 1♂; Kaş, Kemerköy, 260 m., 13.07.2002 2♂. It has been collected from weeds in *Pinus brutia* forest, on *Asphodelus aestivus*, *Verbascum*, *Phlomis*, *Fontanesia phillyreoides*, *Cytisus laburnum*, *Vitex agnus-castus* and *Cistus creticus*. **Distribution in Turkey:** Adana, Burdur, Hatay, İzmir, Muğla (Dlabola, 1957, Linnavuori, 1965; Dlabola, 1981; Lodos & Kalkandelen, 1981a).

Remarks: New for Antalya.

Family: Flatidae Spinola, 1839

Phantia subquadrate (Herrich-Schaffer, 1838)

Materials: Akseki, Güzülköy, 610 m., 18.08.1999 1♀; Korkuteli, Kargahlk, 1250 m., 27.07.1999 1♀; Akseki, Murutçu, 540 m., 25.07.2001 1♂1♀; Termessos, Güllük Dağı, 540 m., 22.07.2001 1♂; Güllük Dağı, 900-1000 m., 22.07.2001 1♂; Araştırma Ormanı, 550 m., 19.07.2002 1♀; Araştırma Ormanı, 750 m.,

Family: Cicadidae Leach, 1815

Lyristes plebejus (Scopoli, 1763)

Cicadatra adanai Kartal, 1980

Materials: Gündoğmuş, Çiçekoluk, 960 m., 25.07.1999 1♀; Manavgat, Bucakşehirler, 15-26.08.1997 1♂; Manavgat, 26.07.1999 3♂; İbradı, Üzümdere, 470 m., 18.08.1999 1♂; Manavgat, 30.07.1999 1♂; Demirciler, 40 m., 21.07.1999 1♂3♀; Demirciler, 70 m., 22.07.1999 1♂; Bucakşehirler, 13.08.1999 1♂; Manavgat, 01.08.1999 1♂; Bucakşehirler, 45 m., 19.07.2001 2♂1♀; Manavgat, 10 m., 26.07.2001 1♂; Gündoğmuş, Güneycik, 210 m., 22.06.2002 1♀; Güneycik, 210 m., 14.07.2002 1♂; Manavgat, Demirciler, 105 m., 21.06.2002 1♂; Güllük Dağı, Araştırma Ormanı, 550 m, 19.07.2002 1♀. On Zea mays, Ficus carica, Olea europaea, Sesamum indicum, Fontanesia phillyreoides, Cistus creticus, Pinus brutia, Salix and weeds. Distribution in Turkey: Adana (Kartal, 1980). Remarks: New for Antalya and endemic to Turkey.

Cicadatra hyalina (Fabricius, 1798)

Cicada mordoganensis Boulard, 1979

Cicada lodosi Boulard, 1979

Materials: Düzlerçami, 280 m., 22.07.2001 4♂1♀; Çığlık, 330 m., 19.07.2002 4♂3♀. *Pinus brutia* and *Olea europaea*. **Distribution in Turkey:** İzmir, Manisa (Boulard, 1979; Lodos & Kalkandelen, 1981b). **Remarks:** New for Antalya and endemic to Turkey.

Cicada permagna (Haupt, 1917)

Materials: Manavgat, Bucakşeyhler, 18-28.06.1997 6♂3♀; Bucakşeyhler, 45 m., 19.07.2001 5♂; Aksey, Erenkaya, 630 m., 22.06.2002 1♂; Güllük Dağı, Araştırma Ormanı, 750 m., 19.07.2002 1♂1♀; Gündoğmuş, Çiçekoluk, 960 m., 14.07.2002 1♀; Kemer, Olimpos, 23.07.2003 1♂. On *Pinus brutia* and *Olea europaea*. **Distribution in Turkey:** Antalya, Mersin (Boulard, 1979; Dlabola, 1981). **Remarks:** New for Antalya and endemic to Turkey.

Tibicina haematodes (Scopoli, 1763)

Materials: Kaş, Beldibi, 1400 m., 29.07.1999 1♀. On *Pinus brutia*. **Distribution in Turkey:** İstanbul (Fahringer, 1922). **Remarks:** Known to Antalya.

Pagiphora aschei Kartal, 1978

Materials: Manavgat, Demirciler, 40 m., 21.07.1999 1♂; Aksey, Güneykaya, 570 m., 25.07.1999 1♂; Termessos, Güllük Dağı, 900-1000 m., 22.07.2001 1♀; Güllük Dağı, 540 m., 22.07.2001 1♂1♀; Araştırma Ormanı, 550 m., 19.07.2002 1♀; Araştırma Ormanı, 750 m., 19.07.2002 1♂1♀; Manavgat, Demirciler, 17.07.2002 1♂. On *Ficus carica*, *Quercus*, *Arbutus andrachne* and *Ulmus*. **Distribution in Turkey:** Antalya (Kartal, 1983). **Remarks:** Known to Antalya.

Cicadetta dimissa (Hagen, 1856)

Family: Cercopidae Leach, 1815

Triecphorella geniculata (Horvath, 1881)

Materials: Gündoğmuş, Güneycik, 210 m., 17.03.2002 1♀; Güneycik, 210 m., 21.04.2002 1♂; Serinyaka, 640 m., 19.05.2002 1♀. It has been collected from weeds in *Pinus brutia* forest and *Myrthus communis*. **Distribution in Turkey:** Adana, Kahramanmaraş, Konya, Samsun (Fahringer, 1922; Kartal, et. al., 1994). **Remarks:** New for Antalya.

Lepyronia coleoptrata (Linnaeus, 1758)

Materials: Manavgat, Değirmenli, 04.08.1999 2♂2♀; Bucakşeyhler, 13.08.1999 11♂7♀; Demirciler, 10 m., 17.08.1999 2♂2♀; Bucakşeyhler, 24.07.1999 5♂2♀; Bucakşeyhler, 30 m., 23.07.1999 1♂1♀; Manavgat, 10.08.1999 1♂; Demirciler, 65 m., 21.07.1999 1♂; Bucakşeyhler, 45 m., 24.07.1999 1♂2♀; Aksu, Perge, 27.07.1999 1♂1♀; Manavgat, 10 m., 20.07.1999 1♂; Demirciler, Külcüler, 150 m., 22.07.1999 1♂; Alanya, Okurcalar, 12.05.2001 1♂; Manavgat, Tilkiler, 220 m., 14.05.2001 2♂2♀; Demirciler, 40 m., 11.05.2001 1♂3♀; Demirciler, 40 m., 05.06.2001 1♂3♂; Finike, 06.06.2001 1♂; Gündoğmuş, Güneycik, 210 m., 08.06.2001 1♂; Manavgat, Bucakşeyhler, 45 m., 19.07.2001 1♂; Demirciler, 40 m., 24.07.2001 1♀; Alanya, Keşefli, 21.07.2001...
Neophilaenus campestris (Fallen, 1805)
Materials: Manavgat-Çeltikçi, 14.04.2001 1♀; Belenobası, 130 m., 15.04.2001 1♂ 5♀; Alanya, Okurcalar, 12.05.2001 3♀; Keşefli, 12.05.2001 8♂ 18♀; Gazipaşa, Çalpınar, 25 m., 12.05.2001 2♂; Manavgat, Yukarıışıklar-Tilkiler, 460 m., 14.05.2001 1♂ 3♀; Tilkiler, 220 m., 14.05.2001 2♂ 1♀; Yaylaalan, 540 m., 14.05.2001 1♀; Tilkiler, 470 m., 14.05.2001 1♂ 1♀; Demirciler, 40 m., 11.05.2001 1♂; Bucakşeyhler, Seleukeia, 250 m., 23.04.2002 2♀; Demirciler, 105 m., 22.04.2002 1♂ 2♀; Demirciler, 40 m., 22.04.2002 1♂; Gündoğmuş, Güneycik, 240 m., 21.04.2002 1♂; Çiçekoluk, 960 m., 19.05.2002 3♂ 1♀; Alanya, Okurcalar, 20.05.2002 2♀; Gazipaşa, Çalpınar-Kahyalar, 20 m., 20.05.2002 1♀. It has been collected from weeds in *Pinus brutia* forest. Distribution in Turkey: Adana, Afyon, Ankara, Artvin, Aydın, Bilecik, Bursa, Çankırı, Çorum, Diyarbakır, Edirne, Erzincan, Gümüşhane, İzmir, Kars, Kütahya, Manisa, Mardin, Muğla, Muş, Sakarya, Samsun, Siirt, Tokat (Fahringer, 1922; Dlabola, 1957; Lodos & Kalkandelen, 1981c). Remarks: New for Antalya.

Neophilaenus minor (Kirschbaum, 1868)

Aphrophora corticea Germar, 1821
Materials: Manavgat, Yaylaalan, 545 m., 14.05.2001 1♂; Yukaruşık-Tilkiler, 460 m., 14.05.2001 1♂ 3♀; Gündoğmuş, Serinyaka, 640 m., 19.05.2002 3♀; Güneycik, 240 m., 19.05.2002 1♂; Akseki, Güclüköy, 575 m., 22.06.2002 1♀. It has been collected from weeds and shrubs in *Pinus brutia* forest and on *P. brutia*. Distribution in Turkey: Afyon, Aydin, Bilecik, Çanakkale, Isparta, Kütahya, Muğla, Tokat. (Lodos & Kalkandelen, 1981c). Remarks: New for Antalya.

Philaeus signatus Melchar, 1896

Philaeus spumarius (Linnaeus, 1758)
Materials: Gündoğmuş, Güneycik, 210 m., 17.04.2001 2♂ 3♀; Manavgat, Demirciler, Kılçüler, 170 m., 15.04.2001 7♂ 8♀; Manavgat-Çeltikçi, 14.04.2001 1♂; Belenobası, 130 m., 15.04.2001 13♂ 17♀; Demirciler, 65 m., 14.04.2001...
6♂8♀; Saracaş, 15.04.2001 1♂1♀; Hocalı, 215 m., 15.04.2001 2♂; Demirciler, 40 m., 14.04.2001 3♂; Yaylaalan, 540 m., 14.05.2001 2♂17♀; Tilkiler, 470 m., 14.05.2001 7♂2♀; Demirciler, 65 m., 11.05.2001 14♂25♀; Alanya, Okurcalar, 12.05.2001 4♂5♀; Keşfi, 12.05.2001 6♀; Manavgat, Tilkiler, 220 m., 14.05.2001 21♂18♀; Yaylaalan, 545 m., 14.05.2001 3♂3♀; Gazipaşa, Çalışpınar, 25 m., 12.05.2001 3♂2♀; Yukarıtısklar-Tilkiler, 460 m., 14.05.2001 38♂51♀; Beşkonak, 145 m., 07.06.2001 1♂; Demirciler, 40 m., 05.06.2001 1♂; Evrenleravyşi, Söylerkale, 250 m., 16.03.2002 1♂; Demirciler, 40 m., 22.04.2002 5♂7♀; Bucakşeyhler, 70 m., 23.04.2002 9♂6♀; Bucakşeyhler, Seleukeia, 250 m., 23.04.2002 2♂3♀; Demirciler, Külçiler, 230 m., 22.04.2002 2♂1♀; Demirciler, 105 m., 22.04.2002 2♂3♀; Demirciler, 65 m., 22.04.2002 14♂12♀; Gündoğmuş, Güneyecik, 240 m., 21.04.2002 2♂1♀; Serinyaka, 640 m., 19.05.2002 15♂5♀; Çiçeköl, 960 m., 19.05.2002 3♂; Manavgat, Tilkiler, 20 m., 18.05.2002 1♂3♀; Demirciler, 105 m., 18.05.2002 3♂; Gazipaşa, Çalışpınar-Kahyalar, 20.05.2002 2♂3♀; Alanya, Okurcalar, 20.05.2002 1♂; Akseki, Güzültüköy, 575 m., 22.06.2002 1♂. It has been collected from weeds in Pinus brutia forest, on Myrthus communis, Pistacia terebinthus, Phlomis and fields. Distribution in Turkey: Ağrı, Amasya, Ankara, Artvin, Aydın, Balıkesir, Bilecik, Bitlis, Bursa, Çankakkale, Elazığ, Erzincan, Erzurum, Giresun, Gümüşhane, Hakkari, İzmir, Kahramanmaraş, Kars, Kocaeli, Kırklareli, Kütahya, Malatya, Manisa, Mardin, Muğla, Ordu, Rize, Samsun, Siirt, Sinop, Sivas, Tekirdağ, Tokat, Trabzon, Van (Dlabola, 1957, 1981; Linnavuori, 1965; Lodos & Kalkandelen, 1981c; Kartal, et. al., 1994). Remarks: New for Antalya.

Family: Membracidae Rafinesque, 1815
Gargara genistae (Fabricius, 1775)

Centrotus cornutus (Linnaeus, 1758)

* This study is prepared from a Ph. D. Thesis approved by the Institute of Natural Sciences of Gazi University on August 2005.

ACKNOWLEDGEMENTS

I thank Dr. Yasemin Özdemir, Dr. Mustafa Özdemir, Dr. İşıl Özdemir and my family for their help during different phases of this project.
LITERATURE CITED

Demir, E. 2006. Contributions to the knowledge of Turkish Auchenorrhyncha (Homoptera) with a new record, Pentastiridius nanus (Ivanov, 1885). Munis entomology and zoology 1(1): 97-122.

NOMENCLATURAL CHANGES FOR ORIENTAL LONGHORNED BEETLES (COLEOPTERA: CERAMBYCIDAE)

Daniel J. Heffern* and Hüseyin Özdikmen**

* 10531 Goldfield Ln., Houston, TX 77064 USA, e-mail: titanusgiganteus@hotmail.com
** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Ankara, 06500 TÜRKİYE, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: Three nomenclatural issues involving Cerambycidae are discussed and corrected.

KEY WORDS: Janidera, Euchlanis, Microdebilissa, Cleonice, Sarawaka, Seuthes, Cerambycidae, Oriental Region

Subfamily Cerambycinae
Tribe Dejanirini

Hüdepohl (1988) described the genus Janidera, but failed to properly validate the genus by designating a type species. Heffern (2005) validated the genus-group name Janidera by specifying a type species, Dejanira biapiculata Pascoe, 1866, and transferring the appropriate species into the genus. Inadvertantly, Janidera insignata Hüdepohl, 1992, was overlooked, and is hereby included with Janidera Heffern, 2005 (Cerambycinae: Dejanirini).

Subfamily Cerambycinae
Tribe Molorchini

Euchlanis Pascoe, 1869, (Cerambycinae: Molorchini), was described for Euchlanis collaris Pascoe, 1869, from Borneo. Pic (1925) described the genus Microdebilissa for Microdebilissa bipartita Pic, 1925, of China. Neodeuteromma Mitono, 1936, was described for Neodeuteromma serratipenne Mitono, 1936, of Taiwan. Gressitt (1951) synonymized Neodeuteromma serratipenne with Microdebilissa testacea Matshushita, 1933. Gressitt & Rondon (1970) synonymized Microdebilissa with Euchlanis. However, Euchlanis Pascoe, 1869, is a junior homonym of Euchlanis Ehrenberg, 1832, (Rotifera), and therefore the next available genus-group name, Microdebilissa Pic, 1925, must replace Euchlanis Pascoe, 1869, as the valid name of this genus-group. Eighteen (18) valid taxa are thus now included in Microdebilissa Pic, 1925. The species occur in China, India, and SE Asia, including Borneo. Therefore, to clarify the new nomenclature for Microdebilissa, the following list is prepared:
Microdebilissa Pic, 1925 (type species: Microdebilissa bipartita Pic, 1925)

syn. : Neodeuteromma Mitono, 1936 (type species: Neodeuteromma serratipenne Mitono, 1936)

not available: Euchlanis Pascoe, 1869 (type species: Euchlanis collaris Pascoe, 1869) (pre-occupied by Euchlanis Ehrenberg, 1832, Rotifera)

Microdebilissa collaris (Pascoe, 1869) comb. nov.
Microdebilissa bipartita Pic, 1925
Microdebilissa minuta Pic, 1927
Microdebilissa diversipes Pic, 1930
Microdebilissa testacea Matsushita, 1933

syn. : Neodeuteromma serratipenne Mitono, 1936
Microdebilissa atricornis Pic, 1940
Microdebilissa simplicicollis Gressitt, 1951 (new name for M. serratipenne Gressitt, 1937)

not available: serratipenne Gressitt, 1937 (pre-occupied by N. serratipenne Mitono, 1936)

Microdebilissa bicolor (Gressitt & Rondon, 1970) comb. nov.
Microdebilissa subviridis (Gressitt & Rondon, 1970) comb. nov.
Microdebilissa argentifera (Holzschuh, 1984) comb. nov.
Microdebilissa infirma (Holzschuh, 1989) comb. nov.
Microdebilissa robustula (Holzschuh, 1990) comb. nov.
Microdebilissa atripennis (Pu, 1992) comb. nov.
Microdebilissa breviuscula (Holzschuh, 1992) comb. nov.
Microdebilissa furva (Holzschuh, 1993) comb. nov.
Microdebilissa homalina (Holzschuh, 1993) comb. nov.
Microdebilissa posticina (Holzschuh, 1993) comb. nov.
Microdebilissa aethiops (Holzschuh, 1995) comb. nov.

Subfamily Cerambycinae
Tribe Glaucytini

The genus Cleonice was erected by Thomson (1864) with the type species Cleonice vestita Thomson, 1864 from Indonesia: Moluccas in Cerambycidae (Cerambycinae: Glaucytini). Later, the genus Cleonice was described by Robineau-Desvoidy (1863) with the type species Cleonice nitidiusculata (Zetterstedt, 1859) in the fly family Tachinidae. It is still a valid generic name in Diptera. Thus, the generic name Cleonice Thomson, 1864 is a junior homonym of the generic name Cleonice Robineau-Desvoidy, 1863. Recently, Özdikmen & Abang (2006) proposed a replacement name, Sarawaka, for the genus name Cleonice Thomson, 1864. On the other hand, Pascoe described the genus Seuthes in 1869 (type species: Seuthes sericata Pascoe, 1869). Later, Seuthes sericata was synonymized with Cleonice vestita Thomson, 1864. Both genera are monotypic. So, Seuthes Pascoe, 1869 is synonym of Cleonice Thomson, 1864 for the present. In this case, Sarawaka Özdikmen & Abang, 2006 is an unnecessary replacement name. Since the genus name Cleonice is not valid, as Özdikmen & Abang, 2006 discussed, then the genus name Seuthes Pascoe, 1869 must be used to replace Cleonice Thomson, 1864.
Summary of nomenclatural changes:

Seuthes Pascoe, 1869-651 (type species: *Seuthes sericata* Pascoe, 1869).

syn. : *Seuthes* Pascoe, 1869-651 (type species: *Seuthes sericata* Pascoe, 1869).

Seuthes vestitus (Thomson, 1864) **comb. nov.**

syn. : *Cleonice vestita* Thomson, 1864-333

syn. : *Seuthes sericata* Pascoe, 1869-652

ACKNOWLEDGEMENTS

Appreciation is extended to Mr. Carolus Holzschuh for comments regarding this work.

LITERATURE CITED

Heffern, D. J. 2005. Validation and type-species designation for the genus *Janidera* sensu

Pascoe, F. P. 1869. Longicornia Malavana; or, a descriptive catalogue of the species of the three longicorn families Lamiidae, Cerambycidae and Prionidae collected by Mr. A. R. Wallace in the Malay Archipelago. (Part VII). The Transactions of the Entomological Society of London 3 (3) 7: 553-712.

ADDITIONAL RECORDS FOR THE ODONATA FAUNA OF SOUTH-WESTERN ANATOLIA - PART I: ANISOPTERA

Ali Salur* and Suat Kiyak**

*Hitit Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 19030 Çorum/TÜRKİYE, e-mail: alisalur@gmail.com
**Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara/TÜRKİYE, e-mail: skiyak@gazi.edu.tr

ABSTRACT: In this study, anisopteran specimens collected from the provinces Antalya, Aydın, Burdur, Denizli, Isparta and Muğla in South-Western Anatolia, April-September in 2000-2002 have been established faunistically. It has been determined that they belong to 43 species and subspecies of 21 genera of 5 families.

KEY WORDS: Odonata, Anisoptera, South-Western Anatolia, Turkey.

There have been many studies reported about the Odonata fauna of Turkey until now. Among this Demirsoy (1995) (unpublished project report) was the most detailed. We have been studying the Turkish fauna of Odonata detailed since 1998. The present study consists of faunistic data belonging to south-western Anatolia. This field was studied between 2000-2002 and it collected and identified approximately 1100 anisopteran specimens. Anisoptera of the field were given at first part of the study which is about the Odonata fauna of SW Anatolia. Faunistic data belonging to Zygoptera for the field will be published soon as a second part.

The aim of this study is not to compare obtained data with the data obtained before and regional fauna. The aim of the present study is to preserve the result of the fauna of SW Anatolian Anisoptera for scientists. For this reason, no reference to any manuscript or data belonging to this region is made.

All anisopteran samples were collected from SW region of Turkey in the years 2000-2002 and they were collected by using net trap and were killed in killing jars using ethyl acetate vapour. These samples are deposited in the Zoological Museum of Gazi University (=ZMGU). Some samples were just observed from the research field and such samples are marked with “(obs.)” in the present study.

RESULTS

Family AESHNIDAE

Aeshna affinis Vander Linden, 1823

Materials: DENİZLİ: 6 males, Bozkurt (Plateau of Çambaşı, Karagöl), 37°44’N 29°29’E, 1280 m, 08.08.2000; ISPARTA: 1 male, 1 female, Keçiborlu
Aeschna mixta Latreille, 1805
Materials: MUĞLA: 1 male, 1 female, Milas (Kayabaşı), 37°19’N 27°51’E, 215 m, 23.06.2002.

Anaciaeschna isosceles antehumeralis (Schmidt, 1954)
Materials: ANTALYA: 2 males, Kaş (Kalkan, Yeşilköy), 36°17’N 29°01’E, 15 m, 20.05.2000; 1 female, Kalkan, 36°17’N 29°01’E, 230 m, 20.05.2000; 1 female, between Bağlağaç-Kayadibi, 22.05.2000; AYDIN: 1 male, Söke (Şerçin lake), 37°33’N 27°23’E, 10 m, 16.04.2000; BURDUR: 1 male, Çavdır (Yamadı), 37°07’N 29°36’E, 990 m, 19.07.2000, 1 male, 17.07.2001, 1 male, 27.06.2001; 1 male, Çivril (Düzbel), 38°10’N 30°03’E, 845 m, 19.06.2002; MUĞLA: 1 male, Milas (Kazıklı-Taşlıova), 37°17’N 27°39’E, 20 m, 17.04.2000; 1 male, Dalaman (Kapıgargın, Kocagöl), 36°43’N 28°01’E, 22.05.2000; 1 female, Dalaman (Race of Yuvarlak stream), 36°54’N 28°44’E, 22.05.2000; 3 females, Dalaman (Kapıgargın, Kocagöl), 36°41’N 28°50’E, 21 m, 22.04.2002.

Anax immaculifrons Rambur, 1842
Materials: ANTALYA: 2 males, Kemer (Göynük), 36°40’N 30°31’E, 65 m, 04.08.2000.

Anax imperator Leach, 1815
Materials: ANTALYA: 1 male, Kaş (Gömbe, Girdev lake), 36°40’N 29°40’E, 1815 m, 24.06.2000; 1 male, Kemer (between Kuzdere-Kemer), 36°36’N 30°28’E, 360 m, 14.07.2001; 1 male, Kaş (Gelemiş, Patara), 36°16’N 29°19’E, 25 m, 14.07.2001; 1 male, Manavgat (Çolakh), 36°49’N 31°19’E, 36°m, 19.08.2001; 1 female (obs.), Manavgat (Hocalar, Sarsu bridge), 36°52’N 31°15’E, 20 m, 19.08.2001; AYDIN: 1 male, Çine (Elderesi), 37°41’N 28°06’E, 625 m, 21.05.2001; BURDUR: 1 male (obs.), Çavdır (Yamadıburnu), 37°09’N 29°36’E, 975 m, 22.06.2002; DENİZLİ: 1 male, Honaz (Yukarıdağıdere, Saklıgöl), 37°46’N 29°23’E, 990 m, 19.07.2000, 1 male, Tavas (Sarabat), 37°37’N 29°12’E, 1120 m, 07.08.2000; 1 male, Çivril (between Emirhisar-Tuğlu), 38°15’N 29°50’E, 840 m, 26.06.2001; 1 male, Çivril (Bucak, İşiklak lake), 38°14’N 29°51’E, 838 m, 26.06.2001; 5 males, Honaz (Yukarıdağıdere, Saklıgöl), 37°46’N 29°23’E, 970 m, 27.06.2001; 1 male, Buldan (Süleymanlı lake), 38°03’N 28°46’E, 1170 m, 17.07.2001; 1 male, Honaz (Yukarıdağıdere, Saklıgöl), 37°46’N 29°23’E, 960 m, 17.07.2001; 1 female, Beyağıça (Akçay), 37°19’N 28°51’E, 655 m, 21.08.2001; ISPARTA: 1 female, Senirkent (Güreme), 38°03’N 30°47’E, 965 m, 21.06.2000; 1 male, Sütçüler (Kesme), 37°28’N 31°17’E, 1005 m, 26.06.2001; 1 male, Sütçüler (Kesme-Aşağlı Yayelbal crossroads), 37°31’N 31°17’E, 892 m, 26.06.2000; 1 male, Aksu (between Yakaköy- Yenişarbademli), 37°43’N 31°16’E, 1753 m, 27.06.2000; 1 male, Yalvaç (Yarıkaya), 38°27’N 31°02’E, 1450 m, 08.07.2000; 1 male, Yalvaç (Siciliş, Yalvaç dam), 38°22’N 31°08’E, 1200 m, 20.06.2001; 1 male, between Gelendost-Afşar, 38°07’N 30°59’E, 965 m, 20.06.2001; 1 male, Eğirdir (Kovada dam), 37°20’N 30°52’E, 920 m, 21.06.2001; 1 male (obs.), Aksu stream, 37°47’N 31°06’E, 1305 m, 28.06.2001; 1 male, Yalvaç (Yarıkaya), 38°28 146’N
31°08'672"E, 1824 m, 19.07.2001; 1 male, Sütçüler (between İncidere-Belence, Köprü river), 37°34'N 31°10' E, 730 m, 23.08.2001; 1 male, 4 females, Yalvaç (Aşağıkaşlıkara, Eğirdir lake), 38°16'N 30°50'E, 930 m, 19.06.2002; MUĞLA: 1 female, Milas (Dibekdere, Sarıçay), 37°20'N 27°43'E, 41 m, 20.05.2001.

Anax parthenope (Selys, 1839)

Materials: ANTALYA: 1 male, Gazipaşa (Yakacak), 36°06'N 32°33'E, 15 m, 18.08.2001; DENİZLİ: 1 female, Čivril (Beşdilli, Işıklı lake), 38°15'N 29°56'E, 850 m, 18.05.2001; 2 males, Honaz (Yukarıdağdere, Saklıgöl), 37°46'N 29°23'E, 970 m, 27.06.2001, 1 male, 17.07.2001; ISPARTA: 1 female, between Gelendost-Afsar, 38°07'N 30°50'E, 665 m, 20.06.2001; 1 female, Gölçük lake, 37°43'N 30°30'E, 1410 m, 28.06.2001; 1 male, Yalvaç (Aşağıkaşlıkara, Eğirdir lake), 38°16'N 30°50'E, 930 m, 19.06.2002; MUĞLA: 1 male, Köyceğiz lake, 36°57'N 28°41'E, 75 m, 18.04.2000.

Hemianax ephippiger (Burmeister, 1839)

Materials: AYDIN: 9 females, Söke (Şerçin lake), 37°33'N 27°23'E, 10 m, 16.04.2000.

Brachytron pratense (Müller, 1764)

Materials: MUĞLA: 1 male, 1 female, Dalaman (Kapıgargın, Kocagöl), 36°41'N 28°50'E, 21 m, 22.04.2002.

Caliaeschna microstigma (Schneider, 1845)

Materials: ANTALYA: 1 male, Elmalı (Kemer-Elmalı road, Yapralı), 36°50'N 29°45'E, 1541 m, 23.06.2000; 1 male, Manavgat (Beşkonak road 25 km, Köprü river), 37°04'N 31°14'E, 54 m, 25.06.2000; 3 males, Beşkonak (Kırkkavak-Tazi), 37°17'N 31°13'E, 510 m, 25.06.2000; 1 male, 1 female, Beşkonak (Çaltepe), 37°19'N 31°13'E, 487 m, 25.06.2000; 1 male, Alanya (Dim river), 36°33'N 32°11'E, 100 m, 11.07.2000; 1 female, Gündoğmuş (Alara river), 36°45'N 32°02'E, 314 m, 11.07.2000; 1 male, Gündoğmuş (Alara river), 36°49'N 32°00'E, 800 m, 29.06.2001; 1 female, Gündoğmuş (between Güneyköy-Şişkupinar, Kargı river), 36°40'N 31°53'E, 130 m, 29.06.2001; 1 male, Alanya (between Soğukbeli-Payallar, Deliçay), 36°37'N 31°52'E, 115 m, 29.06.2001; 1 male, Alanya road, 36°32'N 32°17'E, 1020 m, 12.07.2001; 1 male, Alanya (Beldibi), 36°28'N 32°21'E, 720 m, 18.08.2001; 1 male, Kaş (Gömbe, Sinekçi), 36°27'N 29°39'E, 1475 m, 28.06.2001; BURDUR: 1 female, Ağlasun-Yeşilbaş road, 37°39'N 30°27'E, 1400 m, 15.07.2000; 1 male, Yeşilova (Salda beli), 37°29'N 29°36'E, 1180 m, 16.07.2000; DENİZLİ: 1 male, Beyağaç (Uzunoluk), 37°14'N 28°59'E, 900 m, 21.05.2001; 1 male, Buldan (Süleyman-Buldan), 38°02'E 28°47'E, 1130 m, 25.06.2001; 1 male, Honaz (Aydınlar), 37°44'N 29°22'E, 950 m, 17.07.2001; 1 male, Çardak (between Beyelerli-Hayriye), 37°39'N 29°38'E, 1140 m, 17.07.2001; ISPARTA: 9 males, 1 female, Sütçüler (Kovada river), 37°35'N 30°52'E, 890 m, 19.05.2000; 1 male, Aksu (Dedegöl mountains), 37°42'N 31°17'E, 1610 m, 13.07.2000; 2 males, Aksu (Dedegöl mountains, İnşividi stream), 37°42'N 31°14'E, 1290 m, 13.07.2000; 1 male, Aksu (Yakaasaf), 37°44'N 31°10'E, 1260 m, 14.07.2000; MUĞLA: 1 male, Kavaklıdere (Dokuzçam), 37°24'N 28°29'E, 645 m, 16.07.2001; 1 female, Köyceğiz (Beyobası, Yuvarlak stream), 36°54'N 28°47'E, 110 m, 22.04.2002.
Family GOMPHIDAE

Gomphus flavipes lineatus Bartenev, 1929
Materials: AYDIN: 1 male, Söke (Sarıkemer, Büyük Menderes river), 37°38’N 27°22’E, 24 m, 20.05.2001; 5 males, Nazilli (Büyük Menderes river), 37°52’N 28°19’E, 66 m, 25.06.2001.

Gomphus schneideri Sélys, 1850
Materials: ANTALYA: 1 male, Korkuteli-Elmali road 15. km, 36°56’N 30°09’E, 1360 m, 26.05.2002; DENİZLİ: 1 male, Çivril (Yuva), 38°17’N 29°54’E, 850 m, 18.05.2001; 1 male, Çivril (DSİ watering regulator), 38°13’N 29°49’E, 842 m, 28.05.2002; 1 female, Acıpayam (Çakır), 37°18’N 29°20’E, 830 m, 22.06.2002; ISPARTA: 2 males, 1 female, Eğirdir (Aşağık Gökdere crossroads), 37°33’N 30°47’E, 365 m, 21.06.2002; MUĞLA: 1 male, Fethiye (Uğurlu), 36°37’N 29°20’E, 140 m, 22.05.2000; 2 males, Yatağan (Madenler stream), 37°20’N 28°09’E, 394 m, 27.05.2002; 1 male, 1 female, Yatağan (Kayırlı), 37°25’N 28°08’E, 300 m, 27.05.2002; 1 male, Köyceğiz (Sultaniye), 36°54’N 28°35’E, 15 m, 25.06.2002; 1 male, Köyceğiz (Hamitköy), 36°56’N 28°36’E, 13 m, 25.06.2002.

Onychogomphus assimilis (Schneider, 1845)
Materials: ANTALYA: 1 female, Beşkonak-Köprüli Kanyon, 37°10’N 31°11’E, 164 m, 25.06.2000; 1 male, 1 female, Manavgat (Sağırini, Köprüli Kanyon), 37°03’N 31°13’E, 65 m, 25.06.2000; 1 female, Gündoğmuş (Güzelsaç), 36°45’N 32°01’E, 285 m, 29.06.2001; DENİZLİ: 1 male, Çameli (Kirazlıyaylı, Karabayır stream), 36°58’N 29°01’E, 840 m, 16.07.2000; ISPARTA: 1 female, Aksu (Anamas plateau), 37°49’N 31°13’E, 1896 m, 14.07.2000.

Onychogomphus flexuosus (Schneider, 1845)
Materials: MUĞLA: 3 males, 4 females Kemer (Kaynazlı, Kaynazlı stream), 22.05.2000.

Onychogomphus forcipatus albotibialis Schmidt, 1954
Materials: ANTALYA: 1 male, Finike (Alakır dam), 36°23’N 30°12’E, 55 m, 20.05.2000; 2 males, Kumluca (between Güzören-Karaağaç), 36°28’N 30°20’E, 535 m, 25.06.2000; 1 male, Gündoğmuş (Güneycik), 36°46’N 31°46’E, 500 m, 12.07.2000; 2 males, 2 females, Alanya (Demirtaş, Sedre river), 36°25’N 32°11’E, 30 m, 26.05.2001; 1 male, Gündoğmuş (Alara river), 36°49’N 32°00’E, 800 m, 29.06.2001; 1 male, Alanya (Karapınar, Gevne bridge), 36°36’N 32°24’E, 1100 m, 12.07.2001; 1 male, Kemer, 36°36’N 30°29’E, 165 m, 14.07.2001; 1 male, Alanya (between Beldibi-Fakircalı), 36°28’N 32°17’E, 520 m, 18.08.2001; 2 males, Finike (between Arıkoş-Kilittepe, race of Akçay), 36°29’N 30°04’E, 380 m, 26.05.2002; AYDIN: 3 males, Kuyucak (between Başaran-Azizabat, Dandalaz river), 37°52’N 28°32’E, 115 m, 25.06.2001; BURDUR: 1 male, Yeşilova (Salda lake), 37°30’N 29°39’E, 1375 m, 18.07.2001; DENİZLİ: 1 male, Çivril (Gökgöl), 38°12’N 30°02’E, 850 m, 18.05.2001; 2 males, Acıpayam (Alaattın), 37°27’N 29°16’E, 1020 m, 22.06.2001; 1 male, Acıpayam (between Aliveren-Dariveren, Güre mountain), 37°14’N 29°27’E, 1140 m, 27.06.2001; 1 male, Çivril (Beyköy), 38°11’N 29°53’E, 841 m, 28.05.2002; ISPARTA: 1 male, Sütçüler (Kovada river), 37°35’N 30°52’E, 890 m, 19.05.2000; 1 male, Yalvaç (Aşağıkışakara, Eğirdir lake),
38°15'N 30°48'E, 940 m, 21.06.2000; 6 males, 3 females, Senirkent (Gencali, Egirdir lake), 38°14'N 30°45'E, 950 m, 21.06.2000; 1 male, 1 female, Senirkent (Gencali, Egirdir lake), 38°14'N 30°45'E, 950m, 21.06.2000; 1 male, Sütçüler (Ayyahpinar), 37°40'N 31°01'E, 1070 m, 15.07.2000; 3 males, Yenisarbademli, 37°41'N 31°19'E, 1230 m, 13.07.2000; 2 males, Sütçüler (between Sütçüler-Boğazköy), 37°31'N 30°59'E, 960 m, 15.07.2000; 1 male, Senirkent (Genceli, Egirdir lake), 38°14'N 30°45'E, 950 m, 19.07.2000; 2 males, 1 female, Sütçüler (between Ayyahpinar-Baklan, Köprü river), 37°41'N 31°01'E, 1145 m, 10.08.2000; 1 male, Sütçüler (Melihler-Çandır crossroads), 37°27'N 30°52'E, 310 m, 21.06.2001; 1 male, Yalvaç (Bağkonak), 38°13'N 31°17'E, 252 m, 1245 m, 20.07.2001; 1 male, 1 female, Sütçüler (between Belence-Ayvalı), 37°39'N 31°04'E, 1100 m, 23.08.2001; 1 male, Yalvaç (Aşağıkaşıkara, Egirdir lake), 38°16'N 30°50'E, 930 m, 19.06.2002; 3 males, 4 females, Senirkent (Boyah, Egirdir lake), 38°03'N 30°50'E, 956 m, 19.06.2002; 2 males, 1 female, Egirdir (Aşağı Gökdere crossroads), 37°33'N 30°47'E, 365 m, 21.06.2002; MUĞLA: 1 female, Milas (Taşlı-Kızılağaç), 37°17'N 27°19'E, 20 m, 17.04.2000; 1 male, Kemer (Kincilar, Kincilar stream), 22.05.2000; 1 male, Köyceğiz (Karaboğürtlen, Balılık river), 37°00'N 28°32'E, 70 m, 18.07.2000; 1 female, Köyceğiz (Karaboğürtlen, Fethiye deresi), 37°00'N 28°30'E, 90 m, 18.07.2000; 1 male, 3 females, Ula (Yaylasöğüt), 37°12'N 28°40'E, 925 m, 18.07.2000; 1 male, Kemer (Ceylan, stream), 36°49'N 29°33'E, 140m, 06.08.2000; 3 males, Kemer (Bekçiler), 36°53'N 29°40'E, 1250m, 06.08.2000; 3 males, 1 female, between Kemer-Karahasantaşı (race of Esen Çayı), 36°56'N 29°38'E, 1390m, 06.08.2000; 1 male, Yatağan (between Şahinler-Madenler), 37°20'N 28°07'E, 350 m, 25.06.2001; 1 female, Milas (Yusufca), 37°19'N 27°51'E, 175 m, 16.07.2001; 1 male, Karacaören (race of Akçay), 37°13'N 28°45'E, 580 m, 21.08.2001; 1 male, between Beyağaç-Karacaören, 37°13'N 28°50'E, 625 m, 21.08.2001; 1 male, Ula (Yeşilçam), 36°59'N 28°25'E, 157 m, 25.06.2002; 1 male, Marmaris (Aksaz cove), 36°57'N 28°25'E, 370 m, 25.06.2002; 1 female, Köyceğiz (Aksaz cove), 36°55'N 28°25'E, 108 m, 25.06.2002; 1 male, Dalaman (Tersakan-İI), 36°47'N 28°49'E, 13 m, 25.06.2002; 1 male, Fethiye, 03.05.2002; 2 males, Milas (Kayabaşı), 37°19'N 27°51'E, 215 m, 23.06.2002.

 Lindenia tetraphylla (Vander Linden, 1825)

Materials: AYDIN: 1 male, Nazilli (Esen, Akçay), 37°47'N 28°19'E, 80 m, 25.06.2001; MUĞLA: 1 male, 1 female, Dalaman (Kapıgargın, Kocagöl), 36°41'N 28°50'E, 4 m, 15.07.2001; 1 male, Köyceğiz (Hamitköy), 36°56'N 28°36'E, 13 m, 25.06.2002.

Family CORDULEGASTERIDAE

Cordulegaster insignis insignis Schneider, 1845

Materials: ANTALYA: 2 males, İkipınar (Yeşilbağ), 37°23'N 31°16'E, 754 m, 26.06.2000; BURDUR: 1 male, Karacaören, 37°32'N 30°13'E, 1435 m, 15.07.2000; 1 male, between Güney-Yesilova (Salda beli), 37°29'N 29°36'E, 1165 m, 23.05.2000; 1 male, Karamanlı (Kayalı), 37°18'N 29°55'E, 1083 m, 23.06.2000; 1 male, Ağlasun-Yeşilbağ road, 37°39'N 30°27'E, 1400 m, 15.07.2000; DENIZLİ: 1 male (obs.), Çameli (Aliveren-Kınıtyeri, Güre mountain), 37°12'N 29°26'E, 1500 m, 27.06.2001; ISPARTA: 1 male, Yalvaç (between Başkonak- Çankurtaran, Sultandağı), 38°15'N 31°20'E, 1663 m, 27.06.2000; 1 male, Çankurtaran, 38°17'N 31°26'E, 1349 m, 27.06.2000; 1 male, Aksu (Dedegöl mountains), 37°42'N 31°17'E, 1610 m, 13.07.2000; 1 male,
Keçiborlu (Özbahçe), 38º01'N 30º21'E, 1330 m, 19.07.2000; 1 male, Yenişarbademli, 37º43'N 31º20'E, 1445 m, 10.08.2000; 1 female, Yalvaç (Sücili, Yalvaç dam), 38º22'N 31º08'E, 1200 m, 21.06.2000; 1 male, Yalvaç (Yarıkaya), 38º27'N 31º01'E, 1764 m, 26.07.2001; MUĞLA: 3 males, Köyceğiz (Yayla, Gölgeli mountains), 37º03'N 28º47'E, 1730 m, 17.07.2000; 1 male, Köyceğiz (Yayla), 37º01'N 28º45'E, 867 m, 15.07.2001; 1 male, Köyceğiz (Gölgeli mountains), 37º02'N 28º47'E, 1670 m, 15.07.2001; 1 male, Fethiye (Babadağ, near cistern), 03.05.2002.

Cordulegaster picta Sélys, 1854
Material: DENİZLİ: 1 male, Denizli (between Buldan-Süleymanlı), 38º02'N 28º47'E, 1120 m, 17.07.2001.

Family CORDULIIDAE

Somatochlora flavomaculata (Vander Linden, 1825)
Material: MUĞLA: 1 male, Dalaman (Kapıgargın, Kocagöl), 36º42'N 28º50'E, 17 m, 13.07.2001.

Family LIBELLULIDAE

Libellula depressa Linnaeus, 1758
Materials: DENİZLİ: 2 males, Acıpayam (Alaattın), 37º27'N 29º16'E, 1020 m, 22.06.2001; 1 male, Çivril (between Emirhisar-Tuğlu), 38º15'N 29º50'E, 840 m, 26.06.2001; ISPARTA: 1 female, Yalvaç (Özgüney), 38º15'N 31º12'E, 1120 m, 19.06.2002; 1 female, Aksu (between Karağı-Yaكافار), 37º45'N 31º07'E, 1215 m, 28.06.2001; MUĞLA: 2 males, Milas (Geyik dam), 37º23'N 27º55'E, 486 m, 23.06.2001.

Libellula fulva Müller, 1764
Materials: ANTALYA: 1 male, Kalkan (Yeşilköy), 36º17'N 29º19'E, 8 m, 27.05.2001; AYDIN: 1 male, Yenipazar (Donduran, Akçay), 37º50'N 28º13'E, 75 m, 21.05.2001; 1 male, Kuyucak (between Başaran-Azizbat, Dandalaz river), 37º52'N 28º32'E, 115 m, 25.06.2001; 1 male, Umurlu (Büyük Menderes river), 37º48'N 27º57'E, 56 m, 27.05.2002; MUĞLA: 1 female, between Göcek-Fethiye, 36º43'N 29º01'E, 599 m, 22.05.2000; 3 males, Dalaman (Kapıgargın, Kocagöl), 36º43'N 28º01'E, 22.05.2000; 1 male, Dalaman (Kapıgargın, Kocagöl), 36º41'N 28º50'E, 21 m, 22.04.2002.

Libellula pontica (Sélys, 1887)
Materials: ANTALYA: 1 female, Kaş (Kalkan, Yeşilköy), 36º17'N 29º21'E, 15 m, 20.05.2000; DENİZLİ: 1 male, 1 female, Çivril (Yova), 38º17'N 29º54'E, 850 m, 18.05.2001; 1 male, 1 female, Çivril (DSİ watering regulator), 38º13'N 29º49'E, 842 m, 28.05.2002; MUĞLA: 2 males, 4 females, Milas (Kazikhi-Taşılova), 37º17'N 27º39'E, 20 m, 17.04.2000.

Libellula quadrimaculata Linnaeus, 1758
Materials: DENİZLİ: 1 male, Honaz (Yukaridağdere, Saklıgöl), 37º46'N 29º23'E, 990 m, 19.07.2000; 1 male, Honaz (Yukaridağdere, Saklıgöl), 37º46'N 29º23'E, 970 m, 27.06.2001.
Orthetrum albistylum (Sélys, 1848)

Materials: AYDIN: 2 females, Nazilli (Büyük Menderes river), 37°52'N 28°10'E, 66 m, 25.06.2001; ISPARTA: 1 male, between Gelandost-Afşar, 38°07'N 30°59'E, 965 m, 20.06.2001.

Orthetrum brunneum (Fonscolombe, 1837)

Materials: ANTALYA: 1 male, Elmalı (Avlan lake), 36°34'N 29°32'E, 80 m, 04.08.2000; 1 male, Finike (Akyaka, Akçay), 36°28'N 30°05'E, 345 m, 05.08.2000; 1 female, Kaş (Gömbe), 36°31'N 29°40'E, 1260 m, 05.08.2000; 2 females, Kaş (Sinekçibi passegaway), 36°27'N 29°39'E, 1470 m, 05.08.2000; 1 female, Kalkan (Yeşilköy), 36°17'N 29°19'E, 8 m, 27.05.2001; 1 male, Manavgat (between Değirmenözu-Yeşilbağ), 37°23'N 31°16'E, 677 m, 26.06.2000; 1 male, Akseki (Mahmutlar), 36°55'N 31°45'E, 1876 m, 12.07.2000; 1 female, Kemer (Beldibi), 36°44'N 30°32'E, 80 m, 21.05.2000; 2 males, 2 females, Elmalı (Avlan), 36°33'N 29°43'E, 1116 m, 24.06.2000; 1 male, Finike (Arifköy), 36°29'N 30°04'E, 345 m, 05.08.2000; 1 female, Kumluca (Gölcükköy), 36°39'N 30°59'E, 1130 m, 25.06.2000; 1 male, Manavgat (between Değirmenözu-Yeşilbağ), 37°23'N 31°16'E, 677 m, 26.06.2000; 1 male, Akseki (Mahmutlar), 36°55'N 31°45'E, 1876 m, 12.07.2000; 1 female, Kemer (Beldibi), 36°44'N 30°32'E, 80 m, 04.08.2000; 1 male, Finike (Akyaka, Akçay), 36°28'N 30°05'E, 345 m, 05.08.2000; 1 female, Kaş (Gömbe), 36°31'N 29°40'E, 1260 m, 05.08.2000; 2 females, Kaş (Sinekçibi passegaway), 36°27'N 29°39'E, 1470 m, 05.08.2000; 1 female, Kalkan (Yeşilköy), 36°17'N 29°19'E, 8 m, 27.05.2001; 1 male, Manavgat (Hocular, Sarısu bridge), 36°52'N 31°15'E, 20 m, 19.08.2001; 1 male, Serik (Cumalar, Kayburnu stream), 36°55'N 31°02'E, 30 m, 14.09.2001; AYDIN: 5 males, 2 females, Çine (between Subaşı-Dalama), 37°44'N 28°03'E, 150 m, 25.06.2001; 2 males, 1 female, Kuyucak (between Bağaran-Azizabat, Dandalaz river), 37°52'N 28°32'E, 115 m, 25.06.2001; 1 female, Bozdoğan (Kazandere), 37°38'N 28°22'E, 140 m, 12.09.2001; 1 male, Çine (Eskiçine, Çine river), 37°31'N 28°04'E, 85 m, 27.05.2002; BURDUR: 1 female, Yeşilova (between Orhanlı-Yeşilova), 37°35'N 29°06'E, 1190 m, 22.06.2000; 1 female, Ağlasun-Yeşilbağ road, 37°39'N 30°27'E, 1400 m, 15.07.2000; 4 males, Yeşilova (Sazak), 37°32'N 29°56'E, 935 m, 15.07.2000; 1 male, Gölhisar (Gölhisar lake, Uylupınar), 37°06'N 29°36'E, 980 m, 06.08.2000; 1 female, Gölhisar (Çamköy), 37°14'N 29°31'E, 933 m, 07.08.2000; 1 female, Yeşilova (Aşağıkılırcık, Akgöl), 37°41'N 29°44'E, 1020 m, 08.08.2000; 1 male, Karaçal, Karaçal dam, 37°33'N 30°04'E, 930 m, 09.08.2000; 1 female, Yeşilova (İskılar), 37°33'N 29°46'E, 1170 m, 18.07.2001; 1 male, Yeşilova (Dereköy), 37°39'N 29°48'E, 1080 m, 18.07.2001; 1 male, Kovaciç, 37°42'N 29°58'E, 1206 m, 18.07.2001; 1 male, Karamanlı (stream), 37°25'N 29°49'E, 1196 m, 20.08.2001; DENİZLİ: 1 female, Acipayam (Çıkır, Dalaman river), 37°18'N 29°20'E, 825 m, 16.07.2000; 3 males, Çameli (Kirazlîyaylı, Karaburun stream), 37°58'N 29°11'E, 840 m, 16.07.2000; 1 female, Acipayam (Karâhöyük), 37°30'N 29°20'E, 876 m, 18.07.2000; 1 male, Honaz (Yukarıdağdere, Saklıgöl), 37°46'N 29°23'E, 990 m, 19.07.2000; 1 female, Çardak (Açgöl), 37°49'N 29°25'E, 780 m, 07.08.2000; 1 male, Bozkurt (Plateau of Çambaşı, Karagöl), 37°44'N 29°29'E, 1280 m, 08.08.2000; 1 female, Akköy (Pamukkale, Travertens), 37°55'N 29°07'E, 285 m, 07.08.2000; 2 males, 1 female, Buharkent (Meyremoğlu, Büyük Menderes DSİ watering regulator), 37°56'N 28°42'E, 142 m, 19.05.2001; 1 female, Acipayam (Alaşattın), 37°27'N 29°16'E, 1020 m, 22.06.2001; 1 male, Buldan (between Buldan-Śüleymanlı), 38°02'N 28°07'E, 1120 m, 17.07.2001; 1 male, Honaz (Akbas), 37°43'N 29°25'E, 1127 m, 17.07.2001; 1 male, Çardak (between Beyleri-Hayriye), 37°39'N 29°38'E, 1140 m, 17.07.2001; 1 female, Beyağaç (Akçay), 37°15'N 28°51'E, 655 m, 21.08.2001; 1 male, Honaz (Kaklık), 37°49'N 29°25'E, 580 m, 22.08.2001; 1 male, Çivril (Gümüşsu), 38°15'N 29°55'E, 850 m, 11.09.2001; ISPARTA: 1 male, Yalvaç (Çeleptas), 38°19'N 31°03'E, 1185 m, 21.06.2000; 1 male, Sütçüler (Kesme), 37°28'N 31°17'E, 1005 m, 26.06.2000; 1 male, 2 females, Sütçüler (between Sağrak-Sipahiler), 37°35'N 30°59'E, 118 m,
26.06.2000; 1 male, Aksu (between Yakaköy–Yenişarbademli), 37°43'N 31°16'E, 1753 m, 27.06.2000; 1 male, Yenişarbademli, 37°42'N 31°24'E, 1180 m, 13.07.2000; 1 male, 2 females, Yenişarbademli, 37°41'N 31°19'E, 1230 m, 13.07.2000; 1 male, Aksu (between Aksu-Yakaköy), 37°43'N 31°17'E, 1820 m, 14.07.2000; 1 male, between Aksu-Yenişarbademli, 37°43'N 31°16'E, 1753 m, 14.07.2000; 2 males, 2 females, Aksu (Karağ), 37°45'N 31°07'E, 1230 m, 14.07.2000; 1 female, Aksu (Aksu river), 37°49'N 30°06'E, 1160 m, 19.07.2000; 2 males, Eğirdir (Akbenli), 37°38'N 30°51'E, 930 m, 10.08.2000; 4 males, Sütçüler crossroads (Kovada river), 37°33'N 30°51'E, 630 m, 10.08.2000; 1 male, Aksu (Karağ), 37°45'N 31°07'E, 1210 m, 10.08.2000; 1 male, Uluborlu (İlveda), Pupa river, 38°03'N 30°29'E, 1160 m, 15.07.2000; 1 male, Yalvac (Özbeяз), 38°15'N 31°12'E, 1120 m, 20.06.2001; 1 female, Sütçüler (Melihler-Çandır crossroads), 37°27'N 30°52'E, 310 m, 21.06.2001; 1 female, Yalvac (Yarıkkaya), 38°27'N 31°02'E, 1365 m, 26.07.2001; 2 females, Yalvac (Yarıkkaya), 38°27'N 31°02'E, 1753 m, 26.07.2001; 1 male, 1 female, Güneyce, 37°39'N 30°43'E, 666 m, 23.08.2001; 1 female, Eğirdir (Göktaş, Koysazi stream), 37°50'N 30°53'E, 1500 m, 25.05.2002; 2 males, Eğirdir-İsparta road, 37°58'N 30°46'E, 1220 m, 25.05.2002; MUĞLA: 1 male, Dalaman (Kapıgärın crossroads, Tersakan river), 36°47'N 28°51'E, 22.05.2000; 1 male, Dalaman (Tersakan-III), 36°47'N 28°49'E, 23 m, 17.07.2000; 4 males, 5 females, Köyceğiz (Yayla, Gölgeli mountains), 37°03'N 28°47'E, 1730 m, 17.07.2000; 2 males, 1 female, Kemer (Ceylan.), 36°49'N 29°33'E, 1140 m, 06.08.2000; 4 males, 2 females, Kemer (Bekçiller), 36°53'N 29°40'E, 1250 m, 06.08.2000; 1 male, between Kemer-Karahasantaşı (race of Esen river), 36°56'N 29°38'E, 1390 m, 06.08.2000; 4 females, Yatağan (Pınarbaşı), 37°18'N 28°07'E, 352 m, 23.06.2001; 1 male, Yatağan (between Gökgedik-Katrancı), 37°23'N 27°56'E, 595 m, 23.06.2001; 1 male, Menteşe (Sungur), 37°24'N 28°31'E, 660 m, 16.07.2001; 1 female, between Beyağac-Karacaören, 37°13'N 28°50'E, 625 m, 21.08.2001; 1 male, Köyceğiz (Hamitköy), 36°56'N 28°36'E, 13 m, 25.06.2002.

Orthetrum cancellatum (Linnaeus, 1758)

Materials: ANTALYA: 1 female, Manavgat (Manavgat dam), 36°50'N 31°31'E, 65 m., 21.04.2001; AYDIN: 2 females, Çine (Elderesi), 37°41'N 28°06'E, 625 m, 21.05.2001; 2 males, Çine (Kavuş, Çatak pool), 37°39'N 28°08'N, 705 m, 21.05.2001; 1 male, Çine (Topçam dam), 37°41'N 28°01'E, 135 m, 25.06.2001; BURDUR: 1 male, Bucak (Karacaören-II dam), 37°19'N 30°48'E, 210 m, 19.05.2000; 1 male, Tefenni (Hasanpaşa, Hasanpaşa pool), 37°15'N 29°53'E, 1217 m, 23.06.2000; 1 female, Yeşiłova (Salda beli), 37°29'N 29°36'E, 1180 m, 16.07.2000; 1 male, Gölhisar (Gölhisar lake, Uylupınar), 37°06'N 29°36'E, 980m, 06.08.2000; 1 female, Yeşiłova (Salda beli), 37°29'N 29°36'E, 1180 m, 09.08.2000; 1 male, Yeşiłova (Salda lake), 37°30'N 29°39'E, 1375 m,
Orthetrum chrysostigma (Burmeister, 1839)

Materials: ANTALYA: 1 male, Manavgat (Oymapınar dam), 36°54’N 31°31’E, 50 m, 19.08.2001; 1 male, Manavgat (Hocalar, Sarısu bridge), 36°52’N 31°15’E, 20 m, 19.08.2001; 1 male, Serik (Sağırlı, Köprü river), 37°00’N 31°12’E, 57 m, 26.06.2002; BURDUR: 1 female, Yeşilova (Karaatlı), 37°33’N 29°49’E, 630 m, 10.08.2001; 1 male, Elégirdir (Kovada road), 37°41’N 30°52’E, 921 m, 21.06.2001; 3 males, Elégirdir (Kovada dam), 37°20’N 30°52’E, 920 m, 21.06.2001; 1 male, between Gelen dost-Afşar, 38°07’N 30°59’E, 965 m, 20.06.2001; 1 male, Gölçük lake, 37°43’N 30°30’E, 1430 m, 09.08.2000; 1 male, Eğirdir (Akbenli), 37°38’N 30°51’E, 930 m, 10.08.2000; 1 male, Sütcüler (Köprü crossroads), 37°32’N 30°51’E, 630 m, 10.08.2000; 1 male, Elégirdir (Kovada road), 37°41’N 30°52’E, 921 m, 21.06.2001; 3 males, Elégirdir (Kovada dam), 37°20’N 30°52’E, 920 m, 21.06.2001; 1 male, between Gelen dost-Afşar, 38°07’N 30°59’E, 965 m, 20.06.2001; 1 male, Gölçük lake, 37°43’N 30°30’E, 1410 m, 28.06.2001; 1 male, 2 females, Yalvaç (Sücüllü, Yalvaç dam), 38°22’N 31°08’E, 1200 m, 21.06.2000; 1 female, Sütcüler (Gençali, Eğirdir lake), 38°14’N 30°45’E, 950 m, 21.06.2000; 2 females, Sütcüler (Melihler-Çandır crossroads), 37°27’N 30°52’E, 310 m, 21.06.2001; 1 male, between Aksu-Karağı (Aksu river and dam), 37°47’N 31°06’E, 1305 m, 28.06.2001; 1 female, Yalvaç (Sücüllü, Yalvaç dam), 38°22’N 31°08’E, 1190 m, 08.07.2001; 1 male, Sütcüler (between İncidere-Belence, Köprü river), 37°34’N 31°10’E, 730 m, 23.08.2001; 2 females, Yalvaç (AŞAĞIÇEKİSLİKA, Eğirdir lake), 38°16’N 30°50’E, 930 m, 19.06.2002; 1 male, Senirkent (Kayası), 38°08’N 30°46’E, 830 m, 19.06.2002; 1 male, Eğirdir (Kovada lake), 37°37’N 30°52’E, 930 m, 21.06.2002; MUĞLA: 1 male, Yatağan (Memişler, Kayırıbrücke), 37°25’N 28°08’E, 340 m, 25.06.2001; 1 female, Dalaman (Kapıkargın, Kocagöl), 36°41’N 28°50’E, 5 m, 25.06.2002.

Orthetrum coerulescens anceps (Schneider, 1845)

Materials: ANTALYA: 1 male, Kale- Kaş road (Kekova), 36°14’N 29°45’E, 20.05.2000; 1 male, Alanya (Oba, Alacami), 36°33’N 32°11’E, 100 m, 11.07.2001; 1 male, Gazipaşa (Kocadere), 36°15’N 32°19’E, 30 m, 26.05.2001; 1 female, Alanya (Demirtaş, Sedre river), 36°25’N 32°10’E, 22 m, 29.06.2001; 1 male, Kemer (Between Kuzdere-Kemer), 36°36’N 30°28’E, 360 m, 14.07.2001; 1 male, Gazipaşa (Kahvalı, Delice bridge), 36°17’N 32°16’E, 2 m, 18.08.2001; AYDIN: 1 female, Nazilli (Büyük Menderes river), 37°52’N 28°19’E, 66 m, 25.06.2001; female, Nazilli (Büyük Menderes river), 37°52’N 28°19’E, 85 m,
12.09.2001; 1 male, Kuyucak (between Başaran-Azizabat, Dandalaz river), 37º52'N 28º32'E, 115 m, 25.06.2001; 1 male, Çine (Yörüklere, Çine river), 37º39'N 28º00'E, 65 m, 23.06.2002; BURDUR: 2 males, Yesilova (Sazak), 37º32'N 29º56'E, 935 m, 15.07.2000; 10 males, 4 females, Yesilova (Salda beli), 37º29'N 29º36'E, 1180 m, 16.07.2000; 2 females, Yesilova (Büyükýakaya), 37º37'N 29º53'E, 1280 m, 08.08.2000; 5 males, 4 females, Yesilova (Salda beli), 37º29'N 29º36'E, 1180 m, 09.08.2000; DENIZLİ: 1 female, Akköy (Pamukkale, Travertens), 37º55'N 29º07'E, 780 m, 19.07.2000; 1 male, Serinhisar, 37º37'N 29º17'E, 1100 m, 07.08.2000; 6 males, 1 female, Honaz (Yukarıdağdere, Saklıgöl), 37º46'N 29º23'E, 990 m, 07.08.2000; 1 male, Acıpayam (Aleafattın), 37º27'N 29º16'E, 1020 m, 22.06.2001; 1 male, Honaz (Yukarıdağdere, Saklıgöl), 37º46'N 29º23'E, 960 m, 17.07.2001; 1 male, Çardak (Gemiş, Acıgöl), 37º47'N 29º50'E, 860 m, 20.06.2002; İSPARTA: 1 male, Yenişarbademli, 37º41'N 31º19'E, 1230 m, 13.07.2000; 5 males, 3 females, Aksu (between Aksu-Yakaköy), 37º43'N 31º17'E, 1220 m, 14.07.2000; 7 males, Aksu (Yilanlı), 37º29'N 29º36'E, 1180 m, 09.08.2000; 5 males, 4 females, Yeşilova (Salda beli), 37º29'N 29º36'E, 1180 m, 10.08.2000; 2 males, 1 female, Yalvaç (Aşağıkaşkara, Eğirdir lake), 37º47'N 30º58'E, 1210 m, 28.06.2001; 1 male, 1 female, Yalvaç (Aşağıkaşkara, Eğirdir lake), 37º47'N 30º58'E, 1210 m, 28.06.2001; 1 male, 1 female, Dalaman (Tersakan-II), 36º47'N 28º49'E, 28 m, 13.09.2001.

Orthetrum sabina (Drury, 1770)

Materials: ANTALYA: 1 male, Finike (Hasyurt, Alakır river), 36º18'N 30º15'E, 5 m, 14.07.2001; AYDIN: 1 male (obs.), Nazilli (Esenköy, Akçay), 37º52'N 28º18'E, 76 m, 22.08.2001; 1 male, Çine (Tepeköy, Topçam dam), 37º41'N 28º00'E, 130 m, 25.07.2002; 1 male, Baltolay, 37º46'N 27º50'E, 50 m, 27.05.2002, 1 male (obs.), Söke (Yeşilköy, Azap lake), 37º34'N 27º26'E, 17 m, 23.06.2002; BURDUR: 1 male, Çavdır (Yamalı), 37º07'N 29º36'E, 960 m, 22.06.2002; DENIZLİ: 1 male, Sarayköy (Köprübaşı, Büyük Menderes river), 37º57'N 28º55'E, 155 m, 22.08.2001; MUĞLA: 3 males, 1 female, Milas (Söke road 6. km, Sarıçay), 37º20'N 27º43'E, 41 m, 23.06.2001; 1 male, Milas (Kapıkırı, Bafa lake), 37º28'N 27º32'E, 30 m, 23.06.2001; 1 female, Dalaman (Kapıgargın, Kocagöl), 36º41'N 28º50'E, 4 m, 15.07.2001; 1 male, Dalaman (Kapıgargın, Kocagöl), 36º42'N 28º50'E, 17 m, 13.09.2001; 1 male (obs.), Dalaman (Kapıgargın, Kocagöl), 36º41'N 28º50'E, 21 m, 22.04.2002; 1 male, Milas (Sarıçay), 37º20'N 27º43'E, 35 m, 23.06.2002; 1 female, Köyceğiz (Hamitköy), 36º56'N 28º36'E, 13 m, 25.06.2002.

Orthetrum taeniolatum (Schneider, 1845)

Materials: ANTALYA: 1 female, Finike (Alakır dam and Alakır river), 36º18'N 30º15'E, 5 m, 14.07.2001; AYDIN: 1 male (obs.), Nazilli (Esenköy, Akçay), 37º52'N 28º18'E, 76 m, 22.08.2001; 1 male, Çine (Tepeköy, Topçam dam), 37º41'N 28º00'E, 130 m, 27.05.2002; 1 male, Baltolay, 37º46'N 27º50'E, 50 m, 27.05.2002, 1 male (obs.), Söke (Yeşilköy, Azap lake), 37º34'N 27º26'E, 17 m, 23.06.2002; BURDUR: 1 male, Çavdır (Yamalı), 37º07'N 29º36'E, 960 m, 22.06.2002; DENIZLİ: 1 male, Sarayköy (Köprübaşı, Büyük Menderes river), 37º57'N 28º55'E, 155 m, 22.08.2001; MUĞLA: 3 males, 1 female, Milas (Söke road 6. km, Sarıçay), 37º20'N 27º43'E, 41 m, 23.06.2001; 1 male, Milas (Kapıkırı, Bafa lake), 37º28'N 27º32'E, 30 m, 23.06.2001; 1 female, Dalaman (Kapıgargın, Kocagöl), 36º41'N 28º50'E, 4 m, 15.07.2001; 1 male, Dalaman (Kapıgargın, Kocagöl), 36º42'N 28º50'E, 17 m, 13.09.2001; 1 male (obs.), Dalaman (Kapıgargın, Kocagöl), 36º41'N 28º50'E, 21 m, 22.04.2002; 1 male, Milas (Sarıçay), 37º20'N 27º43'E, 35 m, 23.06.2002; 1 female, Köyceğiz (Hamitköy), 36º56'N 28º36'E, 13 m, 25.06.2002.
Crocothemis erythraea (Brullé, 1832)

Materials: ANTALYA: 1 female, Kumluca (Arifköy, Karacaören), 36°30'N 30°10'E, 1227 m, 24.06.2000; 1 male (obs.), Finike (Hasyurt, Alakır river), 36°18'N 30°15'E, 5 m, 14.07.2001; 1 male (obs.), Manavgat (Çolaklı), 36°49'N 31°19'E, 36 m, 19.08.2001; 1 male (obs.), Manavgat (Hocalar, Sarısu bridge), 36°52'N 31°15'E, 20 m, 19.08.2001; AYDIN: 1 male, Söke (Serçin lake), 37°33'N 27°24'E, 28 m, 20.05.2001; 1 male, Nazilli (Esen, Akçay), 37°48'N 28°19'E, 61 m, 21.05.2001; 1 male, Dalaman (Tersakan-II), 36°47'N 28°49'E, 23 m, 15.07.2001; 1 male, Dalaman (Gürköy), 36°48'N 28°50'E, 32 m, 20.08.2001; 1 female, Dalaman (Dalaman river), 36°49'N 28°47'E, 30 m, 20.08.2001; 1 male, Kale (Köyceğiz crossroad), 37°06'N 28°29'E, 590 m, 21.08.2001.

crocothemis erythraea (brullé, 1832)
materials: antalya: 1 female, kumluca (arífköy, karacaören), 36°30'n 30°10'e, 1227 m, 24.06.2000; 1 male (obs.), finike (hasyurt, alakır river), 36°18'n 30°15'e, 5 m, 14.07.2001; 1 male (obs.), manavgat (çolaklı), 36°49'n 31°19'e, 36 m, 19.08.2001; 1 male (obs.), manavgat (hocalar, sarısu bridge), 36°52'n 31°15'e, 20 m, 19.08.2001; aydın: 1 male, söke (serçin lake), 37°33'n 27°24'e, 28 m, 20.05.2001; 1 male, nazilli (esen, akçay), 37°48'n 28°19'e, 61 m, 21.05.2001; 1 male, dalaman (tersakan-II), 36°47'n 28°49'e, 23 m, 15.07.2001; 1 male, dalaman (gürköy), 36°48'n 28°50'e, 32 m, 20.08.2001; 1 female, dalaman (dalaman river), 36°49'n 28°47'e, 30 m, 20.08.2001; 1 male, kale (köyceğiz crossroad), 37°06'n 28°29'e, 590 m, 21.08.2001.
Sympetrum flaveolum (Linnaeus, 1758)
Materials: BURDUR: 1 female, Yeşilova (Karaatlı), 37°01'N 29°49'E, 1150 m, 08.08.2000; ISPARTA: 1 male, Yeşilova (Izmir), 32°19'N 31°01'E, 1185 m, 21.06.2000; 1 female, Karpuzlu (Yaylakavak dam), 32°49'N 29°00'E, 1255 m, 14.07.2000; 1 male, Sarıçay, 32°19'N 28°30'E, 1180 m, 19.07.2000; BURDUR: 1 male, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; BURDUR: 1 male, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002; 1 female, Çavdır (Yamadıburnu), 32°49'N 29°36'E, 180 m, 23.06.2002.
Sympetrum haritonovi Borisov, 1983

Materials: ANTALYA: 1 male, 2 females, Alanya (Arduçpinarı fountain), 36°53′N 32°23′E, 1920 m, 16.08.2001; 1 female, Alanya (Tosmur plateau), 36°53′N 32°18′E, 2020 m, 16.08.2001.

Sympetrum meridionale (Séllys, 1841)

Materials: ANTALYA: 1 female, Kağ (between Gömbe-Sütleğen, Sinekçibeli), 36°27′N 29°49′E, 1150 m, 08.08.2000; 2 males, 2 females, Yeşilova (Salda beli), 37°29′N 29°36′E, 1180 m, 09.08.2000; 1 male, Keçiborlu (Kaplanlı), 37°56′N 30°03′E, 850 m, 19.06.2002; 1 female, Çardak (Acığöl), 37°49′N 29°25′E, 780 m, 19.07.2000; 1 female, Keçiborlu (Kozluca), 37°55′N 30°15′E, 1160 m, 19.07.2000; 1 male, Uluborlu (İğdır), 38°10′N 30°03′E, 845 m, 19.06.2002; 1 female, Çardak (Gemiş, Acığöl), 37°46′N 29°23′E, 990 m, 07.08.2000; 1 male, Honaz (Keklik kasabası), 37°45′N 29°45′E, 595 m, 08.08.2000; 7 males, 4 females, Bozkurt (plateau of Çambaşı, Karagöl), 37°44′N 29°29′E, 1280 m, 08.08.2000; 1 male, Buldan (Süleymanlı lake), 38°03′N 28°46′E, 1170 m, 17.07.2001; 1 female, Çivril (İshaklı), 38°01′N 30°03′E, 850 m, 11.09.2001; 1 female, Çivril (Gümüşsu), 38°15′N 29°55′E, 850 m, 11.09.2001; 1 female, Çivril (Beydilli, Işıklı lake), 38°17′N 29°54′E, 850 m, 11.09.2001; 3 females, Çivril (Düzbeli), 38°10′N 30°03′E, 845 m, 19.06.2002; 1 female, Çardak (Gemiş, Acığöl), 37°46′N 29°50′E, 860 m, 20.06.2002; İSPARTA: 1 female, Yenişarbademli, 37°41′N 31°19′E, 1230 m, 13.07.2000; 1 male, Aksu (Dédegöl mountain), 37°42′N 31°17′E, 1610 m, 13.07.2000; 1 female, Aksum (Dédegöl mountain, İnisdibi stream), 37°42′N 31°14′E, 1290 m, 13.07.2000; 1 female, Aksu (between Aksu-Yakaköy), 37°43′N 31°16′E, 1622 m, 14.07.2000; 1 female, Aksu (Yakaasfars), 37°44′N 31°10′E, 1260 m, 14.07.2000; 1 male, Aksu (Aksu river), 37°49′N 31°06′E, 1340 m, 14.07.2000; 2 females, Keçiborlu (Kozluca), 37°55′N 30°15′E, 1160 m, 19.07.2000; 1 male, Uluborlu (İlyeşdāğ), 38°03′N 30°24′E, 1160 m, 19.07.2000; 1 male, Senirkent (Büyükkabaka), 38°10′N 30°41′E, 975 m, 19.07.2000; 1 male, Senirkent (Gençeli, Eğirdir lake), 38°14′N 30°45′E, 950 m, 19.07.2000; 1 male, 2 females, Keçiborlu (Kaplanlı), 37°56′N 30°12′E, 1100 m, 19.07.2000; 5 females, Yalvaç (Bağkonak, Sultandağ), 38°15′N 31°20′E, 1600 m, 20.07.2000; 1 male, 1 female, Gölcük lake, 37°43′N 30°30′E, 1430 m, 09.08.2000; 1 female, Sütçüler crossroads (Kovada river), 37°33′N 30°51′E, 630 m, 10.08.2000; 1 male, Aksu (Aksu river), 37°49′N 31°06′E, 1350 m, 10.08.2000; 1 female,
Yalvaç (Kuyucak), 38°14'N 31°12'E, 1125 m, 11.08.2000; 1 female, Uluborlu (İleydağı, Pupa river), 38°03'N 30°29'E, 1160 m, 15.09.2000; 1 female, Gelendost (Hacilar, Eğirdir lake), 38°02'N 30°57'E, 936 m, 20.06.2001; 1 female, Yenişarbademli (Dedegöl mountain), 37°41'N 31°20'E, 1524 m, 13.07.2000; 1 male, Yalvaç (Bağkonak), 38°11'N 31°17'E, 1390 m, 08.07.2000; 1 female, Uluborlu (Ġleydağı, Pupa river), 38°03'N 30°29'E, 950 m, 15.09.2000; 1 female, Yalvaç (Bağkonak), 38°15'N 31°20'E, 1660 m, 28.06.2001; 1 male, Yalvaç (Yarıkkaya), 38°27'N 31°02'E, 1524 m, 13.07.2000; 1 male, Yalvaç (Bağkonak), 38°11'N 31°17'E, 1390 m, 08.07.2000; 1 female, Ula (Gölcük), 37°07'N 28°31'E, 700 m, 21.08.2001; 1 female, Köyceğiz (Örnek, Baklak lake), 37°00'N 29°53'E, 100 m, 13.09.2001; 1 male, Fethiye (Uğurlu), 36°37'N 29°20'E, 140 m, 22.05.2000.

Sympetrum sanguineum (Müller, 1764)

Materials: BURDUR: 2 females, Yeşilova (Karaatlı), 37°33'N 29°49'E, 1230 m, 09.07.1999; DENIZLI: 1 male, 1 female, Çivril (Gököl), 38°10'N 30°04'E, 940 m, 22.06.2000; 1 male, Çardak (Açgöl), 37°49'N 29°25'E, 780 m, 19.07.2000; 1 female, Bozkurt (plateau of Çambaşı, Karagöl), 37°44'N 29°29'E, 1280 m, 08.08.2000; 2 males, Buldan (between Buldan-Süleymanlı), 38°02'N 28°47'E, 900 m, 19.07.2000; 1 female, Keçiborlu (Kaplanlı), 37°56'N 30°12'E, 1167 m, 27.06.2000; 3 females, Keçiborlu (Kaplanlı), 37°56'N 30°12'E, 1167 m, 27.06.2000; 1 male, Keçiborlu (Özbahe), 38°00'N 30°18'E, 1300 m, 19.07.2000; 1 male, Keçiborlu (Özbahe), 38°01'N 30°21'E, 1330 m, 19.07.2000; 1 female, Senirkent (Gençeli, Eğirdir lake), 37°14'N 30°45'E, 950 m, 19.07.2000; 1 male, Yalvaç (Celeptağ), 38°19'N 30°3'E, 1180 m, 19.07.2000; 1 male, Uluborlu (İleydağı), 38°03'N 30°29'E, 1160 m, 15.09.2000; 1 female, Eğirdir (Sütçüler crossroads), 37°33'N 30°57'E, 920 m, 21.06.2002; MUĞLA: 1 male, 1 female, Köyceğiz (Karaböğürtlen, Fethiye stream), 37°05'N 28°50'E, 1910 m, 21.08.2001; 1 female, Fethiye (Kargi, Yamıklar river), 36°42'N 29°02'E, 13 m, 25.06.2002.

Sympetrum striolatum (Charpentier, 1840)

Materials: ANTALYA: 1 male, Alanya (Gevne river, Beyreli), 36°51'N 32°29'E, 1585 m, 10.07.2000; 1 female, Akseki (Güçlüköy), 36°46'N 31°44'E, 195 m, 12.07.2000; BURDUR: 1 female, Çavdır (Yamadı), 37°07'N 29°36'E, 960 m, 22.06.2002; DENIZLI: 1 female, Çivril (Gököl, Ahır stream), 38°11'N 30°03'E, 930 m, 22.06.2000; 1 male, Kale (Solmaz), 37°30'N 28°53'E, 920 m, 18.07.2000; 1 male, Honaz (Yukaridağdere, Saklıgöl), 37°46'N 29°23'E, 990 m, 19.07.2000; 1 male, Honaz (Yukaridağdere, Saklıgöl), 37°46'N 29°23'E, 990 m, 07.08.2000; 1 male, Bozkurt (Plateau of Çambaşı, Karagöl), 37°44'N 29°29'E, 1280 m, 08.08.2000; 1 female, Acipayam (between Aliveren-Dariveren, Güre mountain), 37°14'N 29°27'E, 1140 m, 27.06.2001; 1 male, Çardak (Çaltı), 37°44'N 29°44'E, 920 m, 20.06.2002; ISPARTA: 2 females, Aksu (Dedegöl mountains), 37°41'N 31°20'E, 1524 m, 13.07.2000; 1 male, Yalvaç (Bağkonak, Sultandağı), 38°15'N 31°20'E, 1660 m, 20.07.2000; 2 males, Senirkent (Gençeli), 38°03'N 31°45'E, 950 m, 15.09.2000; 1 female, Eğirdir (Kovada road), 37°41'N 30°52'E, 921 m, 21.06.2001; 1 female, Eğirdir (Kovada dam), 37°20'N 30°52'E, 920 m, 21.06.2001; 1 male, Sütcüler (between İncidere-Kasumlars), 37°34'N 31°07'E, 1450 m, 23.08.2001; MUĞLA: 1 female, Bodrum (Mumcular dam), 37°06'N 27°39'E, 65 m, 23.06.2001; 1 male, Köyceğiz
(Sandras mountain, Kartal lake), 37º05’N 28º50’E, 1910 m, 21.08.2001.

Brachythemis fuscopalliata (Sélys, 1887)

Materials: ANTALYA: 1 male, 1 female, Manavgat (Hocalar, Sarısu bridge), 36º52’N 31º15’E, 20 m, 19.08.2001; 2 males, 1 female (obs.), Manavgat (Kızilot, Karpuzçay), 36º43’N 31º33’E, 10 m, 27.06.2002.

Diplacodes lefebvrei (Rambur, 1842)

Materials: ANTALYA: 1 male, 1 female, Gazipaşa (Hacımusa river), 36º10’N 32º25’E, 62 m, 18.08.2001.

Trithemis annulata (Beauvois, 1807)

Materials: ANTALYA: 1 female, Kale-Kaş road (Kekova), 36º14’N 29º45’E, 20.05.2000; 2 females, Fınike (Alakır dam and Alakır river), 36º27’N 30º13’E, 144 m, 20.05.2000; 1 male, 1 female, Fınike (Alakır dam), 36º27’N 30º12’E, 55 m, 24.06.2000; 1 male, Alanya (Demirtaş, Sredic fırı), 36º25’N 32º11’E, 30 m, 26.05.2001; 1 female, Alanya (Demirtaş, Sedre river), 36º25’N 32º10’E, 22 m, 29.06.2001; 1 male, Gazipaşa (Gazipaşa river), 36º15’N 32º19’E, 35 m, 29.06.2001; 2 males, Alanya (Okçular, Okçular river), 36º39’N 31º39’E, 16 m, 13.07.2001; 1 male, Manavgat (Kızılağaç, Nifrit river), 36º44’N 31º31’E, 13 m, 13.07.2001; 1 female, Manavgat (Evrenseki), 36º49’N 31º20’E, 21 m, 13.07.2001; 2 males, Gazipaşa (Kahyalı, Delice bridge), 36º17’N 32º16’E, 2 m, 18.08.2001; 1 male, Manavgat (Oymapınar dam), 36º54’N 31º31’E, 50 m, 19.08.2001; 1 male, Manavgat (Oymapınar dam), 36º52’N 31º33’E, 102 m, 19.08.2001; 1 female, Manavgat (İlıcaköy), 36º49’N 31º21’E, 15 m, 19.08.2001; 1 male, 2 females, Manavgat (Çolaklı), 36º49’N 31º19’E, 36 m, 19.08.2001; 1 male, Manavgat (Hocalar, Sarısu bridge), 36º52’N 31º15’E, 20 m, 19.08.2001; 1 male, Serik (Kadıburnu stream), 36º55’N 31º01’E, 21 m, 19.08.2001; 1 male, Serik (Gebiz crossroads), 36º56’N 30º55’E, 12 m, 19.08.2001; 1 male, Serik (Durumlar, Aksu river), 37º07’N 30º54’E, 55 m, 19.08.2001; 1 male, Serik (Kirbaş, Aksu river), 37º09’N 30º51’E, 65 m, 19.08.2001; 1 female, Serik (Kirbaş, Hatipler), 37º09’N 30º49’E, 57 m, 19.08.2001; 7 males, 1 female, Manavgat (Manavgat dam), 36º50’N 31º32’E, 60 m, 14.09.2001; 1 male, Serik (Sağırini, Köprü fırı), 37º00’N 31º12’E, 57 m, 26.06.2002; 1 male, Manavgat (Kızılot, Karpuzçay), 36º43’N 31º33’E, 10 m, 27.06.2002; 1 male, Manavgat (Alara river), 36º40’N 31º37’E, 14 m, 27.06.2002; 1 male, Gazipaşa (Kaledran), 36º06’N 32º33’E, 33 m, 27.06.2002; 1 male, Fınike (Alakır dam), 36º27’N 30º13’E, 147 m, 20.05.2000; AYDIN: 1 male, Buharkent (Meyremoğlu, Büyükk Menderes DSİ Regülatörü), 37º56’N 28º42’E, 142 m, 19.05.2001; 2 males, Yenipazar (Donurur, Aşkay), 37º50’N 28º13’E, 75 m, 21.05.2001; 1 male, Çine (between Subaşı-Dalama), 37º44’N 28º03’E, 150 m, 25.06.2001; 1 male, Yenipazar (Alanlı, Aşkay watering), 37º48’N 28º06’E, 65 m, 25.06.2001; 2 males, Nazilli (Esenköy, Aşkay), 37º52’N 28º18’E, 76 m, 22.08.2001; 1 male, Kuşadası (Davutlar), 37º41’N 27º04’E, 50 m, 25.05.2002; BURDUR: 1 female, Bucak (Çobanpınarı), 37º23’N 30º45’E, 736 m, 19.08.2001; 1 male, Göllhisar (Yamadıburnu), 37º08’N 29º36’E, 965 m, 20.08.2001; 4 females, Yeşilova (Karaahlı), 37º33’N 29º49’E, 1230 m, 09.07.2001; DENIZLI: 2 males, 1 female, Güney (Adğızudel fırı), 38º09’N 29º12’E, 460 m, 26.06.2001; ISPARTA: 1 male, Yalvaç (Yarkıkkaya), 38º27’N 31º02’E, 1500 m, 21.06.2000; 2 males, 4 females, Sütçüler (Karacaören dam), 37º25’N 30º53’E, 280 m, 21.06.2001; 1 male, Yalvaç (Bağkonak, Sultandağı), 38º13’32’N 31º17’41’E, 1216 m, 18.07.2001; 2 males, Güneyce, 37º39’N 30º43’E, 666 m, 23.08.2001; MUĞLA:
2 males, Fethiye (Karadere, Özlen river), 36°20′N 29°15′E, 9 m, 27.05.2001; 1 male, 1 female, Milas (Geyik dam), 37°23′N 27°53′E, 486 m, 23.06.2001; 1 male, 1 female, Milas (Akgedik dam), 37°19′N 27°49′E, 90 m, 23.06.2001; 2 females, Milas (Söke road 6. km, Sarıçay), 37°20′N 27°43′E, 41 m, 23.06.2001; 1 male, Dalaman (Tersakan-II), 36°47′N 28°49′E, 23 m, 15.07.2001; 1 male, 2 females, Ula (Ula dam), 37°07′N 28°23′E, 670 m, 21.08.2001; 3 males, 3 females, Milas (Çalli, Geyik dam), 37°22′N 27°53′E, 500 m, 12.09.2001; 2 males, 6 females, Dalaman (Kapıgurgan, Kocagöl), 36°42′N 28°50′E, 17 m, 13.09.2001; 1 male, Milas (Sarıçay), 37°20′N 27°43′E, 35 m, 23.06.2001; 1 male, Köyceğiz (Aksaz koyu), 36°55′N 28°25′E, 108 m, 25.06.2002; 1 female, Köyceğiz (Sultaniye), 36°54′N 28°35′E, 15 m, 25.06.2002; 1 male, Dalaman (Kapıgurgan, Kocagöl), 36°41′N 28°50′E, 5 m, 25.06.2002.

*Present study is a part of dissertation entitled “Odonata Fauna of Mediterranean Region of Turkey”.

LITERATURE CITED

REDESCRIPTION OF *MICROCYCLOPS CUNNINGTONI* (G.O. SARS, 1909) (COPEPODA, CYCLOPOIDA)

Iskandar M. Mirabdullayev*

* Institute of Zoology, Niyazov str. 1, Tashkent, 700095, UZBEKISTAN. E-mail: iskandar@tps.uz

ABSTRACT: *Microcyclops cunningtoni*, a poorly known cyclopoid, is redescribed using specimens from Lake Tanganyika, the type locality. A differential diagnosis is presented.

KEY WORDS: Cyclopoida, Microcyclops cunningtoni, redescription, Lake Tanganyika.

The taxonomy of the genus *Microcyclops* is extremely confusing. There are many species which are inadequately described. *Microcyclops cunningtoni* (G.O. Sars, 1909) is one of the most poorly known representatives of the genus *Microcyclops* Claus, 1893. The species was originally described from Lake Tanganyika (Sars, 1909), and is so far known only from this waterbody. The original and subsequent descriptions by Kiefer (1929) and Lindberg (1951) are inadequate from the point of view of modern copepod taxonomy. In this paper I redescribe the female and male of *M. cunningtoni* based on specimens identified by K. Lindberg from Lake Tanganyika.

MATERIAL AND METHODS

Material examined: two females and one male from the lake Tanganyika, from the K. Lindberg Collection in the Royal Belgian Institute of Natural Sciences, Brussels.

All drawings were made using a drawing tube. Designations of furcal setae are given as follows: Ti, innermost apical furcal seta, Te, outer apical furcal seta, Sd, dorsal furcal seta. Pereopods (legs) 1–5 are designated as P1–P5, endopodite as enp.

RESULTS

Microcyclops cunningtoni (G.O. Sars)

Female. Body length 700 μm. Body widest at posterior part of cephalothorax, tapered anteriorly. Postero-lateral margins of 4th and 5th pedigerous somites rounded (Fig. 1). Lateral sides of 5th thoracic somite without ornamentation. Genital double-somite about as long as wide. Shape of seminal receptacle as in Fig. 2. Posterior margin of anal somite bearing two groups of 15 spinules on ventral and lateral sides (Figs. 3-4). Anal operculum moderately developed, convex (Fig. 3).
Furcal rami: parallel, 2.2-2.3 times as long as wide, with smooth inner surface. Insertions of Te furcal setae provided with spinules. Plumage of Tmi and Tme furcal setae homogenous. Lateral seta situated in posterior half, at 55% of total length of ramus. Ti about as long as caudal ramus and Sd slightly longer than Te.

Antennules (Fig. 5): 12-segmented, short, reaching middle of cephalothorax, armored as follows (segment number in Roman numerals, setal number in Arabic numerals, aesth = aesthetasc, sp = spine): I(8)-II(4)-III(2)-IV(5)-V(4)-VI(1+sp)-VII(2)-VIII(3)-IX(2)-X(2)-XI(2)-XII(7+aesth).

Antenna (Figs. 6, 7): basoendopodite bearing 3 setae, inner (exopodite) seta slightly shorter than outer setae. Caudal side of basoendopodite with 2 rows of spinules, frontal side with one straight and one curved row of spinules. A group of spinules near implantation of inner seta. Second endopodite bearing 9 setae.

Maxillule and maxilliped as in Figs. 8 and 10 respectively. Inner movable claw-like seta of basis of maxilla bearing 2 thin teeth on inner margin (Fig. 9, arrow).

Natatory legs with 2-segmented rami. Spine formula 3.4.4.3, setal formula 5.5.5.5 (Figs. 11-14). Inner margin of basis of P1 with long robust spine reaching beyond middle of P1enp2 (Fig. 11). Inner margin of basis of P1-P4 bearing setules, setules on P4 shorter than those on P1-P3 (Figs. 11-14). Intercoxal sclerites of P1-P3 smooth, these of P4 bearing 2 interrupted rows of spinules on caudal surface (Figs. 11-14). Outer margins of exopodite P1 smooth, outer margins of exopodites 1 of P2-P4 bearing spinules, those of exopodites 2 of P2-P4 bearing setules.

P4enp2 L/W = 1.9. Inner terminal spine slightly shorter than article and 2.2 times longer than outer terminal spine (Fig. 14). P5 relatively short (L/W=1.5-1.6), bearing long apical setae and tiny spinule on inner side (Fig. 2).

Male. Body length 480 μm. Morphology of legs and mouthparts similar to that of female. In contrast to female, spinules of caudal margin of anal somite are situated not only on ventral and lateral, but also on dorsal side (Figs. 15-16). Also in contrast to female the second endopodite of male antenna bearing 8 setae. Distal segment of endopodite of P4 of male demonstrates the same proportions as in female (Fig. 17). Outer seta of P6 are about 4 times as long as the middle seta and 7 times as long as inner spine (Fig. 18).

DISCUSSION

The morphology of the specimens studied and identified previously by K. Lindberg as *M. cunningtoni* in general readily corresponds to the description given by G. O. Sars (1909). However, Sars’s specimens were
slightly larger (body length of female 860 μm), with a relatively shorter inner apical spine of P4enp2 (inner spine about 2.6 times as long as outer spine).

The only African species of *Microcyclops* which has 2 rows of spinules on the intercoxal plates of P4 is *M. rubelloides* Kiefer also inhabiting lake Tanganyika (Kiefer, 1952). Both species are apparently closely related, sharing such characters as:

- type of ornamentation of anal somite;
- 12-segmented antennules;
- presence of 9 setae on second endopodite of antenna in female;
- presence of spinules on outer margins of first segments of exopodites of natatory legs;
- presence of setules on inner margin of basis of P4;
- proportions of furcal rami;
- proportions of P4enp2.

M. cunningtoni differs from *M. rubelloides* mainly by the presence of spinules near the implantation of the Te, a relatively shorter Ti, and a relatively shorter outer apical spine of the endopodite of P4, which is about 0.7-0.8 times as long as the inner spine in *M. rubelloides* and only 0.4-0.5 in *M. cunningtoni* (unpublished observations of *M. rubelloides* in F.Kiefer’s collection in Karlsruhe and U.Einsle’ collection in Oldenburg).

ACKNOWLEDGEMENTS

This study was supported by the Royal Belgian Institute of Natural Sciences, Brussels. I thank Dr. F. Fiers (Belgium) for help in conducting the research and Dr. J.W. Reid (USA) for helpful suggestions.
LITERATURE CITED

Figs. 5-11. *Microcyclops cunningtoni* Sars, 1909, female. 5, antennule; 6, antenna, caudal side; 7, basipodite of antenna, frontal side; 8, maxillule; 9, maxilla; 10, maxilliped; 11, P1. Scales: 25 μm.
CHECK-LIST OF THE TIGER BEETLES OF TURKEY WITH A REVIEW OF DISTRIBUTION AND BIOGEOGRAPHY (COLEOPTERA: CICINDELIDAE)

Serap Avgın* and Hüseyin Özdikmen**

* Department of Biology, Faculty of Science and Arts, Çukurova University, Balcalı, Adana / TURKEY, e-mail: serapavgin@hotmail.com
** Department of Biology, Faculty of Science and Arts, Gazi University, 06500 Ankara / TURKEY, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: The present list is the first attempt to register all modern taxa of tiger beetles distributed to the whole territory of Turkey. A complete list of known Turkish Cicindelidae is given. It includes 2 tribes, 8 genera, and 46 taxa (including subspecies). Nominative subgenera or subspecies are not mentioned, if they do not occur in Turkey. Each name of a genus, species or subspecies is accompanied by the author’s name and the description’s date. Each name of species and subspecies is accompanied by a number of abbreviations divided in two sections indicating the names of countries (or territories) and the names of the Turkish provinces inhabited by the taxon. Geographical notes are also given. The list of used literature includes mostly contemporary publications.

KEY WORDS: Coleoptera, Cicindelidae, tiger beetles, Türkiye, check-list, review, distribution, biogeography.

Both, the adult and larva of tiger beetles are predators. Larva and adult tiger beetles occupy very different ecological niches. Adult tiger beetles are active, diurnal, predatory insects. The larvae are sedentary predators which construct narrow, usually permanent burrows in the substrate at the site of oviposition (Thiele 1977; Lindroth 1992; Luff 1993; Hoback et al. 1998). At any state, tiger beetles are a uniform group, highly adapted to hunting (Hurka 1996). They are very important as biodiversity indicators and prove to be useful for helping to identify areas of maximum collective diversity (Cassola & Pearson 2000).

The most important role of the tiger beetles (Cicindelidae) has been determined as being an appropriate indicator taxon for determining regional patterns of biodiversity (Pearson & Cassola 1992), because their taxonomy is stabilized, biology and general life history are well understood, they are readily observed and manipulated in the field and the family occurs world wide inhabiting many different habitat types. Each species tends to be specialized within a narrow habitat and the family includes species of potential economic importance (Pearson & Cassola 1992). In addition, tiger beetles are often correlated with that of other groups (Pearson & Cassola 1992; Rodriguez et al. 1998) and there is much interest in these natural predators as controls of certain crop pests (Rodriguez et al. 1998).
They have a worldwide distribution (except Tasmania, Antarctica and some remote oceanic Islands) which covers a variety of habitats ranging from alpine meadows to desert grasslands and tropical rain forests (Pearson 1988; Rodriguez et al. 1998). They frequently inhabit flood prone habitats. More than 2000 species require habitats with access to bare ground, such as stream and pond edges, salt flats, dunes and open patches in grasslands (Pearson 1988; Hoback et al. 1998). Each species rarely occurs in more than one or a very few habitat types (Pearson 1984; Rodriguez et al. 1998). The total number of species presently known for the world tiger beetle fauna is 2328. There have been 26 records of these species until present day occurring in Turkey. 2 of these species (Cephalota eiselti (Mandl, 1967) and Homodela ismenia (Gory, 1833)) are endemic for Turkey (Cassola & Pearson 2000; Cassola 1999). Of the 38 taxa (species and subspecies) listed, 11 (28.9 %) are strictly Anatolian endemics, thus confirming Anatolia as an important center of endemic speciation (Cassola 1999).

The Anatolian tiger beetle fauna is poorly known. And there are only a few publications about them. In the first comprehensive publication 23 species of Anatolian tiger beetles were given (Korell 1984 and 1988). The latest comprehensive publication about the Anatolian tiger beetles has presented 26 species (Cassola 1999). Different studies were carried out, treating Anatolian tiger beetles, such as distribution and habitats of Megacephala euphratica in the Çukurova Delta, southern Turkey (Şekeroğlu & Aydin 2002), or the distribution of Lophyridia aphrodisia on the Turkish Mediterranean coast (Franzen 2001a).

The present list is the first attempt to register all modern taxa of tiger beetles in the whole territory of Turkey. In the text two abbreviations are used, DIT for distribution in Turkey and DIW for distribution in the world. Other abbreviations are as follows:

The abbreviations of the provinces of Turkey in the present text (in DIT):

<table>
<thead>
<tr>
<th>Province</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adana</td>
<td>AD</td>
</tr>
<tr>
<td>Adıyaman</td>
<td>ADY</td>
</tr>
<tr>
<td>Afyon</td>
<td>AF</td>
</tr>
<tr>
<td>Ağrı</td>
<td>AG</td>
</tr>
<tr>
<td>Aksaray</td>
<td>AK</td>
</tr>
<tr>
<td>Amasya</td>
<td>AM</td>
</tr>
<tr>
<td>Ankara</td>
<td>AN</td>
</tr>
<tr>
<td>Antalya</td>
<td>ANT</td>
</tr>
<tr>
<td>Ardahan</td>
<td>AR</td>
</tr>
<tr>
<td>Artvin</td>
<td>ART</td>
</tr>
<tr>
<td>Aydın</td>
<td>AY</td>
</tr>
<tr>
<td>Balıkesir</td>
<td>BL</td>
</tr>
<tr>
<td>Bartın</td>
<td>BR</td>
</tr>
<tr>
<td>Batman</td>
<td>BA</td>
</tr>
<tr>
<td>Edirne</td>
<td>ED</td>
</tr>
<tr>
<td>Elazığ</td>
<td>EL</td>
</tr>
<tr>
<td>Erzincan</td>
<td>ER</td>
</tr>
<tr>
<td>Erzurum</td>
<td>EZ</td>
</tr>
<tr>
<td>Eskişehir</td>
<td>ES</td>
</tr>
<tr>
<td>Gaziantep</td>
<td>GA</td>
</tr>
<tr>
<td>Giresun</td>
<td>GI</td>
</tr>
<tr>
<td>Gümüşhane</td>
<td>GU</td>
</tr>
<tr>
<td>Hakkari</td>
<td>HA</td>
</tr>
<tr>
<td>Hatay</td>
<td>HT</td>
</tr>
<tr>
<td>Hakkari</td>
<td>HA</td>
</tr>
<tr>
<td>Iğdır</td>
<td>IG</td>
</tr>
<tr>
<td>Isparta</td>
<td>IP</td>
</tr>
<tr>
<td>Içel</td>
<td>IC</td>
</tr>
<tr>
<td>İstanbul</td>
<td>IS</td>
</tr>
<tr>
<td>Kütahya</td>
<td>KU</td>
</tr>
<tr>
<td>Malatya</td>
<td>MA</td>
</tr>
<tr>
<td>Manisa</td>
<td>MN</td>
</tr>
<tr>
<td>Mardin</td>
<td>MR</td>
</tr>
<tr>
<td>Muğla</td>
<td>MG</td>
</tr>
<tr>
<td>Muş</td>
<td>MU</td>
</tr>
<tr>
<td>Niğde</td>
<td>NI</td>
</tr>
<tr>
<td>Ordu</td>
<td>OR</td>
</tr>
<tr>
<td>Osmaniye</td>
<td>OS</td>
</tr>
<tr>
<td>Rize</td>
<td>RI</td>
</tr>
<tr>
<td>Sakarya</td>
<td>SA</td>
</tr>
<tr>
<td>Samsun</td>
<td>SM</td>
</tr>
<tr>
<td>Şırıt</td>
<td>SI</td>
</tr>
</tbody>
</table>
The abbreviations of countries and territories in the present text (in DIW):

<table>
<thead>
<tr>
<th>Country (Abbreviation)</th>
<th>Country (Abbreviation)</th>
<th>Country (Abbreviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan (AFG)</td>
<td>Afrotropical Region (AFR)</td>
<td>Albania (AL)</td>
</tr>
<tr>
<td>Algeria (DZ)</td>
<td>Andorra (AND)</td>
<td>Arab Emirates (UAE)</td>
</tr>
<tr>
<td>Arabian Peninsula (ARP)</td>
<td>Armenia (ARM)</td>
<td>Asian Turkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= Asia Minor (ATR)</td>
</tr>
<tr>
<td>Austria (AUS)</td>
<td>Azerbaijan (AZ)</td>
<td>Baikal (BAI)</td>
</tr>
<tr>
<td>Bahrain (BRN)</td>
<td>Balearic Islands (BAI)</td>
<td>Belgium (BEL)</td>
</tr>
<tr>
<td>Byelorussia (BRY)</td>
<td>Bosnia and Herzegovina (BAH)</td>
<td>Bulgaria (BG)</td>
</tr>
<tr>
<td>Caspian Sea (CS)</td>
<td>Caucasus (CAU)</td>
<td>Central Asia (CAS)</td>
</tr>
<tr>
<td>Central Europe (CEU)</td>
<td>Cephalonia (CEP)</td>
<td>China (CH)</td>
</tr>
<tr>
<td>Crete (CRE)</td>
<td>Crimea (UKC)</td>
<td>Croatia (CRO)</td>
</tr>
<tr>
<td>Cyprus (CYP)</td>
<td>Czechia (CZ)</td>
<td>Denmark (DEN)</td>
</tr>
<tr>
<td>Egypt (ET)</td>
<td>Estonia (EST)</td>
<td>Ethiopian Region (ETHR)</td>
</tr>
<tr>
<td>European Turkey (ETR)</td>
<td>Finland (FIN)</td>
<td>France (FR)</td>
</tr>
<tr>
<td>Georgia (GE)</td>
<td>Germany (GER)</td>
<td>Great Britain (GB)</td>
</tr>
<tr>
<td>Greece (GR)</td>
<td>Hungary (HU)</td>
<td>India (IN)</td>
</tr>
<tr>
<td>Iran (IR)</td>
<td>Iraq (IRQ)</td>
<td>Ireland (IRE)</td>
</tr>
<tr>
<td>Israel (IL)</td>
<td>Italy (IT)</td>
<td>Jordan (JOK)</td>
</tr>
<tr>
<td>Kashmir (KAS)</td>
<td>Kazakhstan (KZ)</td>
<td>Kopetdag (KOP)</td>
</tr>
<tr>
<td>Kuwait (KWT)</td>
<td>Kyrgyzstan (KYR)</td>
<td>Latvia (LAT)</td>
</tr>
<tr>
<td>Lebanon (RL)</td>
<td>Libya (LAR)</td>
<td>Liechtenstein (LIE)</td>
</tr>
<tr>
<td>Lithuania (LIT)</td>
<td>Luxembourg (LUX)</td>
<td>Macedonia (MK)</td>
</tr>
<tr>
<td>Malta (M)</td>
<td>Moldavia (MOL)</td>
<td>Mongolia (MNG)</td>
</tr>
<tr>
<td>Morocco (MAG)</td>
<td>Nepal (NEP)</td>
<td>Netherlands (NET)</td>
</tr>
<tr>
<td>Norway (NOR)</td>
<td>Oman (OM)</td>
<td>Oriental Region (ORR)</td>
</tr>
<tr>
<td>Pakistan (PK)</td>
<td>Poland (PO)</td>
<td>Portugal (POR)</td>
</tr>
<tr>
<td>Rhodes (RH)</td>
<td>Romania (RO)</td>
<td>Central European Russia (RSC)</td>
</tr>
<tr>
<td>North European Russia (RSN)</td>
<td>South European Russia (RSS)</td>
<td>Saudi Arabia (KSA)</td>
</tr>
<tr>
<td>Serbia and Montenegro (SAM)</td>
<td>Siberia (SIB)</td>
<td>Slovakia (SK)</td>
</tr>
<tr>
<td>Slovenia (SLO)</td>
<td>South Europe (SEU)</td>
<td>Southeast Europe (SEE)</td>
</tr>
<tr>
<td>Southern Russia (RS)</td>
<td>Spain (ESP)</td>
<td>Sweden (SWE)</td>
</tr>
<tr>
<td>Switzerland (SW)</td>
<td>Syria (SYR)</td>
<td>Tadzhikistan (TJ)</td>
</tr>
<tr>
<td>Talysh (TAL)</td>
<td>Taurus (TAU)</td>
<td>Tian—Shan (TIA)</td>
</tr>
<tr>
<td>Transbaikalia (TBA)</td>
<td>Tunisia (TUN)</td>
<td>Turan (TUR)</td>
</tr>
<tr>
<td>Turkey (TR)</td>
<td>Turkmenistan (TM)</td>
<td>Ukraine (UK)</td>
</tr>
<tr>
<td>Uzbekistan (UZ)</td>
<td>West Asia (WAS)</td>
<td>West Europe (WEU)</td>
</tr>
<tr>
<td>Yemen (YE)</td>
<td>Yugoslavia (YU)</td>
<td></td>
</tr>
</tbody>
</table>
Family CICINDELIDAE Csiki, 1906
Tribe MEGACEPHALINI Csiki, 1906

Megacephala Latreille, 1802

euphratica Dejean, 1822
DIT: AD, HT, IC, IZ
DIW: CAU, CYP, DZ, ESP, ET, GR, IL, IR, IRQ, JOR, KOP, KSA, KWT, LAR, MAG, OM, RL, SYR, TR, TUN, TUR, UAE, YE

Tribe CICINDELINI Sloane, 1906

Cicindela Linnaeus, 1758

sylvatica Linnaeus, 1758
ssp. *fasciatopunctata* Germar, 1845
DIT: BS, IS, SV
DIW: TR

monticola Ménétries, 1832
ssp. *monticola* Ménétries, 1832
DIT: ART, KAR
DIW: ARM, GE, RSS, TAL, TR

ssp. *rumelica* Apfelbeck, 1904
DIT: IC [locality certainly erroneous!], IS
DIW: BG, RO, TR

ssp. *tokatensis* Chaudoir, 1863
DIT: BI, BO, BS, BU, CN, DE, EZ, GI, GU, IZ, KR, KS, OR, SA, SN, SV, TB, TO
DIW: ARM, AZ, CAU, GE, RS, TR

campestris Linnaeus, 1758
ssp. *campestris* Linnaeus, 1758
DIT: TR [doubtful record]
DIW: AL, AND, AUS, BAH, BEL, BG, BRY, CRO, CZ, DEN, DZ, ESP, EST, FIN, FR, GB, GER, GR, HU, IR, IRE, IT, KYR, KZ, LAT, LIE, LIT, LUX, M, MAG, MK, MOL, NET, NOR, PO, POR, RO, RSC, RSN, SAM, SIB, SK, SLO, SW, SWE, TU, UZ

ssp. *palustris* Motschulsky, 1840
DIT: CA, IS, IZ, KO
DIW: ATR, ETR, TR

ssp. *pontica* Fischer, 1828
DIT: AM, AN, ANT, BI, BO, BS, BU, CO, ES, GU [doubtful record], IP, IZ, KN, KS, MG, MN, OR, TO, US, YO, ZO
DIW: ARM, ATR, AZ, BG, CAU, CEU, CYP, GE, KZ, RSS, SEU, SIB, TBA, TIA, TR, UK, UKC
ssp. olivieria Brulle, 1832
DIT: ETR [doubtful record]
DIW: AL, GR, TR, YU

herbacea Klug, 1832
DIT: AD, AM [doubtful record], ANT, AY, HT, IC, IP, KA, KM, OS
DIW: ARM, IL, RL, SYR, TR

desertorum Dejean, 1825
DIT: AD [doubtful record], AR, ART, BY, EZ, GI, GU, KAR, MR [doubtful record], OR, RI, SV, TB
DIW: ARM, AZ, CAU, GE, IR, RSS, TAL, TR

turkestanicoides W. Horn, 1938
 ssp. turkestanicoi W. Horn, 1938
DIT: ATR [doubtful record]
DIW: IR

ssp. perreaui Deuve, 1987
DIT: BN, BT, ER, HA, KA, MA, MU, TB [record, possibly due to mislabelling], TU, VA,
DIW: IR, TR

asiatica Audouin and Brullé, 1839
DIT: AD, BN, HA, HT, KA, MU, OS, SU, TU, VA
DIW: ARM, AZ, IR, IRQ, KOP, SYR, TAL, TR

Lophyridia Jeannel, 1946

caucasica (Adams, 1817)
DIT: AD, AM, DI, EL, ER, GA, HA, IC, KAR, KM, KN, KY, MA, MR, NE, SI, SU, TO, TU
DIW: ARM, AZ, GE, IR, IRQ, RSS, TAL, TR

concolor (Dejean, 1822)
 ssp. concolor (Dejean, 1822)
DIT: AD, ANT, AY, GA, HT, IC, MG
DIW: CYP, GR, SYR, TR

 ssp. rouxii Barthelemy, 1835
DIT: ATR
DIW: SYR, TR

fischeri (Adams, 1817)
DIT: AD, ADY, ANT, BN, BS, CN, CO, DE, EL, ER, EZ, GA, GU, HA, HT, IC, IZ, KA, KAR, KU, KY, MA, MG, MR, NE, SI, SU, TO, TU
DIW: AFG, ARM, ATR, AZ, BG, CAU, CYP, GR, IL, IR, JOR, MK, PK, RL, SEE, SYR, TAL, TM, TR
littoralis (Fabricius, 1787)

ssp. nemoralis (Olivier, 1790)

DIT: BS, ED, ETR, IS, SA, TAU [doubtful record], TE

DIW: AL, AUS, BAH, BAI, BG, CAS, CEU, CRO, CS, CZ, ESP, FR, GR, HU, IT, MK, MOL, RO, RS, SAM, SEE, SEU, SK, WEU, TR, UK

ssp. winkleri (Mandl, 1934)

DIT: AD, ANT, AY, DE, HT, IC, IZ, MG, OS

DIW: AFG, ARM, AZ, CYP, GR, IL, IR, IRQ, JOR, RL, SYR, TM, TR, TUR

ssp. mandli Mandl, 1967

DIT: AN, BU, CN, EL, EZ, IP, KIR, KN, KY, MR, NE, NI, OR, SI, SM, SU, SV, TB, TO, VA

DIW: IR, RL, SYR, TR

ssp. aulicoides Sahlberg, 1913

DIT: GA

DIW: ARP, ET, IL, IR, IRQ, JOR, KSA, SYR, TR

aphrodisia Baudi, 1864

ssp. aphrodisia Baudi, 1864

DIT: AD

DIW: SYR, TR

ssp. cypricola Mandl, 1981

DIT: ANT

DIW: CYP, RH, TR

Lophyra Motschulsky, 1859

hilariola (Bates, 1874)

DIT: GA, MR, SU

DIW: IR, IRQ, SYR, TR

Cephalota Dokhtouroff, 1883

Subgen.: *Cephalota* Dokhtouroff, 1883

turcica (Schaum, 1859)

DIT: BL, BS, ED, IS

DIW: ATR, BG, GR, MK, TR

chiloleuca (Fischer, 1820)

DIT: [doubtful record]

DIW: BG, CH, CZ, HU, KZ, MNG, MOL, RO, RSC, RSS, SIB, TR

Subgen.: *Taenidia* Rivalier, 1950

circumdata (Dejean, 1822)

ssp. circumdata (Dejean, 1822)

DIT: AF, AY, BL, CA, ED, IZ, MG
DIW: ATR, BG, ESP, FR, GR, IT, RS, TR, TUN
ssp. cappadocica Franzen, 1996 #25
DIT: AN, KIR, KY
DIW: TR
ssp. hattusae Franzen, 1996 #26
DIT: CO, YO
DIW: TR
eiselti (Mandl, 1967)
ssp. eiselti (Mandl, 1967) #27
DIT: AK, AN, KY, SV
DIW: TR
ssp. cankiriiana Korell and Kleinfeld, 1985 #28
DIT: CN, CO
DIW: TR
deserticola (Faldermann, 1836) #29
DIT: KAR
DIW: AFG, ARM, AZ, CAU, CH, IR, KOP, KVR, KZ, MNG, RS, RSS, SYR, TJ, TM, TR, TUR, UK, UZ

Homodela Rivalier, 1950

ismenia (Gory, 1833)
ssp. ismenia (Gory, 1833) #30
DIT: AD, AM, AN, ANT, BI, CO, DE, IC, IP, IS, IZ, KIR, KN, KR, KS, KY, MG, OS, SM, TO, ZO
DIW: GR, SEU, SYR, TR
ssp. kilikiensis (Mandl, 1961) #31
DIT: AD, BN, GA, HT, IC, KA, NI, OS
DIW: TR
ssp. walterheinzi Franzen, 2003 #31
DIT: BN, MA, MU, VA
DIW: TR

Cylindera Westwood, 1831
Subgen.: Cylindera Westwood, 1831

germanica (Linné, 1758) #32
DIT: ART, BU, CN, EZ, IZ, RI, TB
DIW: AL, AND, ARM, ATR, AUS, AZ, BAH, BEL, BG, BRY, CAS, CH, CRO, CYP, CZ, DEN, ESP, EST, FIN, FR, GB, GER, GE, HU, IR, IRE, IT, KZ, LAT, Lie, LIT, LUX, MK, MNG, MOL, NET, PO, RO, RSC, RSN, RSS, SAM, SIB, SK, SLO, SW, SYR, TBA, TM, TR, UK, WAS
Subgen.: *Eugrapha* Rivalier, 1950

arenaria Fuessly, 1775

ssp. viennensis (Schrank, 1781)
DIT: CN, CO, DE, EZ, GU, KU, NE, KY, OR, TB, TO
DIW: AL, AUS, BAH, BAI, BG, BRY, CAU, CEU, CRO, CZ, FR, GER, GR, HU, KZ, LIT, MK, MOL, PO, RO, RS, RSC, RSS, SAM, SEU, SIB, SK, TR, UK

ssp. nudoscripta (W.Horn, 1915)
DIT: ATR
DIW: ARM, AZ, GE, RSS, TR

trisignata (Dejean, 1822)

ssp. trisignata (Dejean, 1822)
DIT: AD, ANT, MG
DIW: AL, CAU, DZ, ESP, IT, MAG, POR, RS, TR, UKC
ssp. hellenica Cassola, 1973
DIT: IS, OR, SM
DIW: BG, GR, RO, RSS, TR, UK

contorta (Fischer, 1828)
DIT: TR [doubtful record]
DIW: AFG, AZ, CH, GE, IR, KZ, MNG, MOL, RO, RSS, SIB, TJ, TR, TUR, UK, UZ

pygmaea (Dejean, 1825)
DIT: AD, BA, GA, IC, MR, SI, SU, TO
DIW: IR, IRQ, SYR, TR

sublacerata Solsky, 1874

ssp. levithoracica (W. Horn, 1891)
DIT: AG, KAR
DIW: AFG, ARM, AZ, CAU, GE, IR, KAS, PK, RSS, TAL, TR, TUR

Myriochila Motschulsky, 1858

melancholica (Fabricius, 1798)
DIT: AD, AN, ANT, AY, DE, GA, IC, IZ, MA, OS
DIW: AFG, AFR, ARM, AZ, BRN, CAU, CEP, CH, CRE, CYP, DZ, ESP, ET, ETHR, FR, GE, GR, IL, IN, IR, IRQ, IT, JOR, KOP, KSA, KWT, Kyr, KZ, LAR, M, MAG, NEP, OM, ORR, PK, POR, RH, RL, SYR, TJ, TM, TR, TUN, TUR, UAE, UZ, YE

orientalis (Dejean, 1825)
DIT: SU
DIW: ARM, AZ, CAU, CH, GE, IR, IRQ, KOP, Kyr, KZ, RSS, SYR, TJ, TM, TR, TUR, UZ
REMARKS

The present zoogeographical characterization is based on the chorotype classification of the Anatolian fauna, recently proposed by Vigna Taglianti et al. (1999).

#1 The real status of distribution of this species in Turkey is not clear. According to known distribution of this species (especially the records from Iran and Caucasus) it could also occur at least in north-east Turkey. The exact distribution pattern of this species in Turkey still needs to be clarified. Known today are 2 distinct subspecies of *Megacephala euphratica* Dejean, 1822: *Megacephala euphratica* ssp. *euphratica* Dejean, 1822 occurring in TR (Cassola 1999; Löbl & Smetana 2003) and *Megacephala euphratica* ssp. *armenica* Laporte, 1834 occurring in AFG, ARM, AZ, CAU, EU, GE, IR, KZ, PK, TJ, TM, TUR, UZ (Kryzhanovskij et al. 1995; Cassola 1999; Löbl & Smetana 2003). According to Franzen (2001b), *Megacephala euphratica* has following distribution in Turkey: southwestern and southern coast (provinces Adana, Hatay, İçel, İzmir), locally common, but restricted to isolated, undisturbed coastal salt flats. **Chorotype:** Mediterraneo-Sindian.

#2 This subspecies is known only from north Turkey. 3 distinct subspecies of *Cicindela sylvatica* Linne, 1758 are known: *C. s.* ssp. *fasciatopunctata* Germar, 1845, occurring in TR (Cassola 1999; Löbl & Smetana 2003), *C. s.* ssp. *rubescens* Jeanne, 1967, occurring in ESP (Cassola 1999; Löbl & Smetana 2003) and *C. s.* ssp. *sylvatica* Linne, 1758, distributed from Europe to Japan (Kryzhanovskij et al. 1995; Hurka 1996; Cassola 1999; Löbl & Smetana 2003). **Chorotype:** Sibero-European for *Cicindela sylvatica* Linne, 1758.

#3 *Cicindela monticola* Ménétries, 1832 occurs mostly in north Turkey. In Turkey there are 3 distinct subspecies present: *C. m.* ssp. *monticola* Ménétries, 1832, occurring in north-east Turkey, *C. m.* ssp. *rumelica* Apfelbeck, 1904, occurring in north-west Turkey, and *C. m.* *tokatensis* Chaudoir, 1863, occurring in north Turkey, from Bolu to Erzurum and western Turkey, from Bolu to İzmir province (Cassola 1999). **Chorotype:** Turano-European for *Cicindela monticola* Ménétries, 1832.

#4 This subspecies occurs only in north-west Turkey.

#5 This subspecies is known in north Turkey, from Bolu to Erzurum and western Turkey, from Bolu to İzmir province.

#6 This subspecies is distributed in north-west Turkey, from European Turkey to İzmir province. In Turkey there are 2 distinct
subspecies of *Cicindela campestris* Linné, 1758: *C. c. palustris* Motschulsky, 1840, occurring in North-west Turkey and *C. c. pontica* Fischer, 1828, occurring in north Turkey, from Bolu to Ordu, in West Turkey, from Bilecik to İzmir, and in northern central Anatolia (Cassola 1999). All in all are 11 distinct subspecies of *Cicindela campestris* Linné, 1758 known. According to Cassola (1999), the last comprehensive taxonomic review of *Cicindela campestris* is that by Mandl (1944), who recognized 14 subspecies with a enormous geographical range. "Subsequently several populations were placed in this taxon that likely deserve a separate specific status. *C. campestris* populations from Anatolia appear to belong to two distinct and recognizable subspecies: ssp. *palustris* Motschulsky, 1840, apparently restricted to the Marmara Sea and Bosphorus area, and ssp. *pontica* Fischer, 1825, occurring from northern Pontus mountains eastwards to Armenia, Azerbaijan, and Caucasus (Mandl 1944; Wiesner 1992; Trautner & Geigenmüller 1987; Gueorguiev & Gueorgiev 1995; Kryzhanovskij et al. 1995). However, without precise detailed, labeled data, the subspecific identification of most specimens is difficult, sometimes even impossible‖. **Chorotype:** W-Palaearctic for *Cicindela campestris* Linné, 1758.

#7 This subspecies *pontica* Fischer, 1828 is distributed in north Turkey, from Bolu to Ordu; in West Turkey, from Bilecik to İzmir, in northern central Anatolia. According to Cassola (1999) “subspecies oliviera* Brulle has been recorded from "Türkei" by Mandl (1944) and Wiesner (1992), but it is more properly considered a Greek and south Balkan endemic (Cassola 1973c)”.

#8 This species is distributed in south Turkey. Therefore the record of north Turkey (Amasya province) is very doubtful. **Chorotype:** SW-Asiatic.

#9 The species is distributed in north-eastern Turkey. The records of south Turkey (Adana and Mardin provinces) are very doubtful. **Chorotype:** Turanian.

#10 This subspecies is distributed mostly in south-eastern Turkey, from Kahramanmaraş to Hakkari. 2 distinct subspecies of *Cicindela turkestanicoides* Horn, 1938 are known: *C. t. ssp. perreaui* Deuve, 1987, occurring in Turkey (Cassola 1999, Löbl & Smetana 2003) and *C. t. ssp. turkestanicoides* Horn, 1938, occurring in Iran (Cassola 1999, Löbl & Smetana 2003). **Chorotype:** SW-Asiatic for *Cicindela turkestanicoides* Horn, 1938.

#11 This species is distributed mostly in south-eastern Turkey. There are 2 distinct subspecies of *Cicindela asiatica* Audouin and Brullé, 1839 known: *C. a. ssp. asiatica* Audouin and Brullé, 1839,

#12 This species, originally described from the Caucasus area, species occurs mostly in central and eastern Turkey. **Chorotype:** Turanian.

#13 This species is distributed mostly in southern Turkey, from Aydın to Gaziantep. 2 distinct subspecies of *Lophyridia concolor* (Dejean, 1822) are known: *L. c. ssp. concolor* Dejean, 1822, occurring in TR (Cassola 1999; Löbl & Smetana 2003) and *L. c. ssp. rouxiī* Barthelemy, 1835, occurring in SYR, TR (Löbl & Smetana 2003). The “*Cicindela rouxiī***, described by Barthelemy, 1835 from Syria, has been recently re-established as a valid subspecies by Franzen (1999). **Chorotype:** E-Mediterranean.

#15 There are 12 distinct subspecies of *Lophyridia littoralis* (Fabricius, 1790) known. This species is represented in Turkey by the subspecies *L. l. ssp. aulicoides* Sahlberg, 1913, *L. l. ssp. mandli* Mandl, 1967, *L. l. ssp. nemoralis* (Olivier, 1790) and *L. l. ssp. winkleri* (Mandl, 1934) (Kryzhanovskij et al. 1995; Gueorguiev & Gueorguiev 1995; Cassola 1999; Löbl & Smetana 2003). *L. l. ssp. nemoralis* (Olivier, 1790) occurs only in north-west Turkey. **Chorotype:** Primarily Asiatic-European and Turano-Mediterranean for *Lophyridia littoralis* (Fabricius, 1790).

#16 This subspecies is distributed mostly in south-western Turkey from İzmir to Hatay.

#17 This subspecies is distributed mostly in central and East Turkey.

#18 This subspecies is distributed only in south Turkey.

#19 This subspecies is clearly a relict species. And this species
occurs in south Turkey. **Chorotype:** E-Mediterranean for *Lophyridia aphrodisia* Baudi, 1864.

#20 This subspecies is probably distributed in south-west Turkey.

#21 This species is distributed mostly in south-eastern Turkey. **Chorotype:** SW-Asiatic.

#22 This species is basically a peri-Aegean species. The species distributes mostly in north-west Turkey. **Chorotype:** E-Mediterranean.

#23 *Cephalota chiloleuca* and *Cylindera contorta*: two Russian entomologists, Putchkov and Matalin (2003), cite these species from Turkey (in Löbl & Smetana 2003: Catalogue of Palaearctic Coleoptera, Vol. 1). Unfortunately no localities are given, so these records are doubtful.

#24 This species is a typical Mediterranean species. 5 distinct subspecies of *Cephalota circumdata* (Dejean, 1822) are described: *C. c. ssp. circumdata* (Dejean, 1822), occurring mostly in West Turkey, *C. c. ssp. cappadocica* Franzen, 1996, occurring mostly in central Turkey, *C. c. ssp. hattusae* Franzen, 1996, occurring in Çorum and Yozgat provinces of Turkey (Cassola 1999; Löbl & Smetana 2003), *C. c. ssp. imperialis* Klug, 1834, occurring in AL, ESP, IT, TUN (Gueorguiev & Gueorgiev 1995; Cassola 1999; Löbl & Smetana 2003), and *C. c. ssp. leonschaeferi* Cassola, 1970, occurring in FR, IT (Cassola 1999; Löbl & Smetana 2003). **Chorotype:** Primarily Mediterranean for *Cephalota circumdata* (Dejean, 1822).

#25 This subspecies is endemic for Turkey.

#26 This subspecies is endemic for Turkey.

#27 *Cephalota eiselti* (Mandl, 1967) is endemic for Turkey. There are 2 distinct subspecies: *C. e. ssp. eiselti* (Mandl, 1967), occurring in central Turkey and *C. e. ssp. cankiri ana* Korell and Kleinfeld, 1985, occurring in the north of central Turkey (Cassola 1999; Löbl & Smetana 2003). **Chorotype:** central Anatolian endemic.

#28 This subspecies is endemic for Turkey. **Chorotype:** central Anatolian endemic.

#29 This species is distributed only in north-eastern Turkey. **Chorotype:** Turanian.

#30 There are 3 distinct subspecies of *Hom德拉 ismenia* (Gory,
1833) in Turkey: *H. i.* ssp. *ismenia* (Gory, 1833), occurring in West, north and south Turkey; *H. i.* ssp. *kilikiensis* (Mandl, 1961), occurring in south-eastern Turkey, from Gaziantep to Bingöl (Cassola 1999; Löbl & Smetana 2003), and *H. i.* ssp. *walterheinzi* Franzen, 2003, occurring in from Karahan-Pass (west of Malatya) to Lake Van. **Chorotype:** The species is a Turkey endemic. Moreover, old records from “Syria” clearly refer to present day Turkey (Hatay province) (Cassola, 1999).

###31 This subspecies are endemic to Turkey.

###32 This species is known to be widespread in the West-Palaearctic. 4 distinct subspecies of *Cylindera germanica* (Linné, 1758) are known: *C. g.* ssp. *germanica* (Linné, 1758), occurring in Turkey (Cassola 1999; Löbl & Smetana 2003), *C. g.* ssp. *michaelensis* Vidaly Lopez, 1916, from France (Löbl & Smetana 2003), *C. g.* ssp. *muelleri* Magistretti, 1966, occurring in Europe: AL, BAH, CRO, GR, IT, MK, SLO, SAM (Löbl & Smetana 2003), and *C. g.* ssp. *sobrina* Gory, 1833, occurring in FR, ESP (Löbl & Smetana 2003). **Chorotype:** Primarily Sibero-European and Centralasiatic-European.

###34 This species’ distribution is known in West Mediterranean Region. 6 distinct subspecies of *Cylindera trisignata* (Dejean, 1822) are known. In Turkey this species is represented by the subspecies *C. t.* ssp. *hellenica* Cassola, 1973, and *C. t.* ssp. *trisignata* Dejean, 1822. *C. t.* ssp. *trisignata* Dejean, 1822 occurs in south Turkey. **Chorotype:** Mediterranean for *Cylindera ssp. trisignata* (Dejean, 1822).

###35 This subspecies is presented only in north Turkey.

###36 2 distinct subspecies of *Cylindera pygmaea* (Dejean, 1825) are known: *C. p.* ssp. *pygmaea* Dejean, 1825, occurring in Turkey (Cassola 1999; Löbl & Smetana 2003), and *C. p.* ssp. *laetula* Tschitscherine, 1903, occurring in Iran (Löbl & Smetana 2003). **Chorotype:** Centralasiatic-European.
#37 This is basically a Central Asian to Middle East species. 5 distinct subspecies of *Cylindera sublacerata* (Solsky, 1874) are described. This subspecies occurs only in north-east Turkey. **Chorotype:** Primarily Asiatic.

#38 This species is distributed mostly in central and southern Turkey. distinct subspecies of *Myriochila melancholica* (Fabricius, 1798) are known: *M. m. ssp. melancholica* (Fabricius, 1798) occurring in Turkey (Cassola 1999; Löbl & Smetana 2003) and widespread in Asia and Africa, *M. m. ssp. semicircumcincta* Mandl, 1959 occurring in Asia: Iran (Löbl & Smetana 2003), *M. m. ssp. trilunaris* (Klug, 1832), from Madagascar and Comores Islands, and *M. m. ssp. perplexa* (Dejean, 1825), occurring in the islands of Réunion, Seychelles, Comores, Mauritius, and Rodrigues. **Chorotype:** Centralasiatic-Mediterranean and Afrotropico Indo-Mediterranean for *Myriochile melancholica* (Fabricius, 1798).

#39 This species occurs probably in south-east and East Turkey. **Chorotype:** Primarily Turanian and Centralasiatic.

ACKNOWLEDGEMENTS

We wish to thank Karl Werner (Germany) and Fabio Cassola (Italy) for their valuable contributions.

LITERATURE CITED

Franzen, M. 2001b. Distribution of the Tiger Beetle *Megacephala* (*Grammognatha*) *euphratica* in Egypt, the Middle East and central Asia (Coleoptera: Cicindelidae). Zoology in the Middle East, 22: 87-93.

DIVING BEETLES (COLEOPTERA: DYTISCIDAE, NOTERIDAE) OF THE SOUTHWESTERN ANATOLIAN REGION OF TURKEY

Suat Kıyak*, Mustafa Darılmaz*, Ali Salur**
and Savaş Canbulat***

*Gazi University, Sciences and Arts Faculty, Department of Biology, 06500- Ankara/TURKEY. E-mail: skiyak@gazi.edu.tr, mdarilmaz@yahoo.com
**Hitit University, Sciences and Arts Faculty, Department of Biology, 19030, Çorum/TURKEY E-mail: alisalur@gmail.com
***Sakarya University, Sciences and Arts Faculty, Department of Biology, Sakarya/TURKEY E-mail: scanbulat@sakarya.edu.tr

ABSTRACT: Thirty species of Dytiscidae and one species of Noteridae were collected from 80 sampling stations in various aquatic habitats of the southwestern Anatolian region of Turkey (provinces of Antalya, Aydın, Afyon, Burdur, Denizli, Isparta and Muğla) between 2000 and 2002. Species distributions within Turkey are presented as a catalogue of provincial records. Seventeen species are here recorded for the first time from the southwestern Anatolian region. The presence of the three following species in Turkey is confirmed: Dytiscus semisulcatus MULLER, Eretes griseus (FABRICIUS), Hydaticus ponticus SHARP. Several species known previously from only a few localities in Turkey have been shown to have much wider distributions in the country. In accordance with the present study and literature data 49 species of Dytiscidae and 3 species of Noteridae are known from the southwestern Anatolian region.

KEY WORDS: Coleoptera, diving beetles, Dytiscidae, Noteridae, faunistics, Turkey

The Dytiscidae and Noteridae water beetles are commonly called the diving beetles, since their hind legs are usually highly modified for swimming. Both families are cosmopolitan in distribution; although in contrast to the latter occur primarily in the tropical regions of the world (Zalat et. al., 1999).

Thirtytwo species of Dytiscidae and three species of Noteridae have been recorded from the studied region in the following published works: Balfour-Browne (1963), Guéorguiev (1968, 1981), Fery (1991), Fery & Nilsson (1993), Shaverdo (2004), Barclay et al. (2001), and Fery et al. (2001, 2005).

The purpose of this paper is to present a checklist of the diving beetles of the southwestern Anatolian region of Turkey, combining literature data and the results of our collecting trips between 2000-2002.

MATERIALS AND METHOD

This study is based on 208 specimens of adult dytiscids and noterids collected in the southwestern Anatolian region of Turkey (Fig. 1;
Antalya, Aydın, Afyon, Burdur, Denizli, Isparta and Muğla) between 2000 and 2002. Specimens were collected from various aquatic habitats, using a ladle or dip net having a 1 mm mesh size. The beetles were killed in 70 % ethanol and in the laboratory were cleaned of debris with a small paintbrush. Aedeagophore was dissected under the stereomicroscope and left in 10 % KOH solution for about 1–2 hours. Samples were identified using keys by Zaitzev (1972), Franciscolo (1979) and Nilsson & Holmen (1995). Materials have been deposited in the Zoological Museum of the Gazi University (=GUZM), Ankara, Turkey.

In the checklist nomenclature is based on Nilsson (2005, 2006).

Family NOTERIDAE

Subfamily Noterinae Thomson, 1860

Tribe Noterini Thomson, 1860

Canthydrus diophthalmus (Reiche & Sauley, 1855)

Literature records from Turkey: Antalya (Barclay et al., 2001).

Noterus clavicornis (De Geer, 1774)

Material examined: Antalya: 1 ex. Kalkan (Yeşilköy), 36º 17’ N 29º 19’ E, 8 m, 27.05.2001; Aydın: 1 ex. Söke (Avşar-Azap Lake), 37º 35’ N 27º 26’ E, 37 m, 23.06.2001.

Literature records from Turkey: Aksaray, Ankara, Balıkesir, Bilecik, Bolu, Isparta, İzmir, Kayseri, Konya, Manisa (Balfour-Browne, 1963; Guéorguiev, 1968, 1981; Darılmaz & Kıyak, 2006).

Remarks: New to Antalya and Aydın.

Noterus crassicornis (O.F.Müller, 1776)

Literature records from Turkey: Adana, Isparta (Guéorguiev, 1981).

Family DYTISCIDAE

Subfamily Agabinae Thomson, 1867

Tribe Agabini Thomson, 1867

Agabus (Acatodes) congener (Thunberg, 1794)

Material examined: Antalya: 1 ex., Beşkonak (Köprü river), 37º 07’ N 31º 12’ E, 112 m, 25.06.2000; Denizli: 1 ex., Çameli (Güre Mountain, vicinity of Knikyeri), 37º 11’ N 29º 25’ E, 1580 m, 27.06.2001.

Literature records from Turkey: Kars (Guéorguiev, 1981).

Remarks: This species is new to the south and west Anatolia regions.

Agabus (Agabus) zimmermanni Scholz, 1920

Literature records from Turkey: Aydın (Guéorguiev, 1981).

Agabus (Gaurodytes) biguttatus (Olivier, 1795)

Literature records from Turkey: Adana, Aksaray, Ankara, Bilecik, Bursa, Çankırı, Elazığ, Gaziantep, Gümüşhane, Isparta, İzmir, Kastamonu, Sakarya, Trabzon, Yozgat (Guéorguiev, 1981; Darılmaz & Kıyak, 2006).

Agabus (Gaurodytes) bipustulatus (Linnaeus, 1767)

Material examined: Antalya: 1 ex., Korkuteli, (vicinity of Söğütçük), 37° 02' N 30° 24' E, 904 m, 26.05.2002; Denizli: 1 ex., Çivril (Gökgöl), 38° 11' N 30° 03' E, 1450 m, 22.04.2001; Isparta: 1 ex., Aksu (Anamas plateau, waterbed), 37° 49' N 31° 13' E, 1896 m, 14.07.2000; 1 ex., Yalvaç (Sultan mountains-brook), 38° 15' N 31° 22' E, 1565 m, 15.09.2000; 1 ex., Sütçüler (between İncidere and Kasımlar, spring water), 37° 34' N 31° 07' E, 1450 m, 23.08.2001; Muğla: 2 ex., between Yeniköy and Makköy, 37° 02' N 27° 42' E, 350 m, 17.04.2000; 12 ex., Köyceğiz (Yayla village, Gölgeli Mountains), 37° 03' N 28° 47' E, 1730 m, 17.07.2000; 1 ex., Ula (Gölcük town, accumulation of brook), 37° 07' N 28° 31' E, 690 m, 18.07.2000.

Literature records from Turkey: Adana, Ankara, Bursa, Isparta, İzmir, Kars, Kastamonu, Kayseri, Konya, Trabzon, Van (Guéorguiev, 1968, 1981).

Remarks: New to Antalya, Denizli and Muğla.

Agabus (Gaurodytes) conspersus (Marsham, 1802)

Material examined: Afyon: 1 ex., Başmakçı (Akpınar, the brook flows to Acıgöl), 37° 50' N 29° 59' E, 850 m, 20.06.2002; Antalya: 3 ex., Korkuteli (the brook flows to Korkuteli dam), 37° 05' N 30° 08' E, 1074 m, 22.04.2001; 2 ex., Elmali (Armutlu village, brook), 36° 33' N 29° 43' E, 1130 m, 22.04.2001; Burdur: 1 ex., Karamanlı dam and its around), 37° 25' N 29° 49' E, 1200 m, 20.06.2002; 1 ex., Çavdır (Kozaçığı), 37° 07' N 29° 41' E, 1035 m, 22.06.2002; Denizli: 1 ex., Buldan (Süleymancı lake), 38° 03' N 28° 46' E, 1175 m, 19.05.2001; 1 ex., Çameli (Güre mountain, vicinity of Kumkeryi), 37° 11' N 29° 25' E, 1580 m, 27.06.2001; Isparta: 1 ex., Yalvaç (Sultan Mountains, between Bağkonak and Cankurtaran, the brook flows to Akşehir lake), 38° 14' N 31° 21' E, 1657 m, 27.06.2000; 1 ex., between Aksu and Yenişarbademli, 37° 43' N 31° 16' E, 1753 m, 14.07.2000; 2 ex., between Gönle and Afsar (the brook flows Eğirdir lake), 38° 07' N 30° 59' E, 65 m, 20.06.2001.

Literature records from Turkey: Adana, Bursa, Isparta, İzmir, Konya (Guéorguiev, 1968, 1981).

Remarks: New to Afyon, Antalya, Burdur and Denizli.

Agabus (Gaurodytes) dilatatus (Boulenger, 1832)

Remarks: New to Antalya and Isparta.

Agabus (Gaurodytes) faldermanni Zaitzev, 1927

Material examined: Isparta: 1 ex., Yalvaç (Sultan Mountains, between Bağkonak and Cankurtaran, the brook flows to Akşehir lake), 38° 14' N 31° 21' E, 1657 m, 27.06.2000; 1 ex., Muğla: Milas (between Taşlı and Kızılakçak), 37° 18' N 27° 39' E, 50 m, 17.04.2000.

Remarks: This species is new to the south and west Anatolia regions.

Agabus (Gaurodytes) guttatus guttatus (Paykull, 1798)

Material examined: Antalya: 1 ex., Korkuteli (Öküzgüzi I dam), 36° 53’ N 30° 02’ E, 1200 m, 22.04.2001; 2 ex., Elmali (vicinity of Çobanısa village), 36° 52’ N 30° 01’ E, 1170 m, 26.05.2002; Denizli: 2 ex., Çameli (Güre mountain, vicinity of Kınıkyeri), 37° 11’ N 29° 25’ E, 1580 m, 27.06.2001.

Literature records from Turkey: Bolu, Kastamonu (Guéorguiev, 1981).

Remarks: This species is new to the south and west Anatolia regions.

Agabus (Gaurodytes) nebulosus (Forster, 1771)

Material examined: Afyon: 1 ex., Dinar (Elmalı village, Pınarbaşı lake), 38° 04’ N 30° 16’ E, 1113 m, 22.06.2000; Antalya: 1 ex., Elmali (Göltaş, Aylan lake), 37° 35’ N 29° 57’ E, 1200 m, 26.05.2002; Aydın: 1 ex., Söke (Yenidoğan road), 37° 37’ N 27° 22’ E, 15.04.2000; Burdur: 3 ex., Bucak (Onaç dam), 37° 39’ N 30° 34’ E, 831 m, 25.05.2002; Denizli: 1 ex., Çivril (between İnceköy and Seraserli), 38° 15’ N 29° 47’ E, 845 m, 28.05.2002; Muğla: 8 ex., Yatağan (vicinity of Bozarmut, Alişar brook), 37° 17° N 28° 10’ E, 400 m, 27.05.2002.

Literature records from Turkey: Adana, Bursa, Isparta, İstanbul, İzmir, Sinop, Trabzon (Guéorguiev, 1981).

Ilybius fuliginosus fuliginosus (Fabricius, 1792)

Material examined: Isparta: 2 ex., Aksu (between Aksu and Yılanlı), 37° 48’ N 31° 00’ E, 1215 m, 28.06.2001; Konya: 2 ex., Taşkent (Belpınarlı), 36° 54’ N 32° 20’ E, 1738 m, 25.05.2001.

Literature records from Turkey: Bingöl, Kars, Mersin (Guéorguiev, 1981).

Remarks: New to the southwestern Anatolian region.

Ilybius jaechi (Fery & Nilsson, 1993)

Literature records from Turkey: Aydın, Tekirdağ (Fery & Nilsson, 1993).

Platambus maculatus (Linnaeus, 1758)

Material examined: Burdur: 2 ex., Karamanlı (vicinity of Kilavuz village, the brook flows to Karataş lake), 37° 22’ N 29° 52’ E, 1062 m, 23.06.2000; Muğla: 2 ex., Fethiye (south of Karahasan, Esen brook), 36° 56’ N 29° 38’ E, 1390 m, 20.08.2001; 3 ex., Fethiye (vicinity of Seki, Esen brook), 36° 49’ N 29° 33’ E, 1130 m, 20.08.2001; 10 ex., Kemer (Seki brook), 36° 50’ N 29° 34’ E, 1150 m, 13.09.2001.

Literature records from Turkey: Adana, Bilecik, Kars (Guéorguiev, 1981).

Remarks: New to the southwestern Anatolian region.

Subfamily Colymbetinae Erichson, 1837

Tribe Colymbetini Erichson, 1837

Colymbetes fuscus (Linnaeus, 1758)

Material examined: Aydın: 2 ex., Söke (Yenidoğan road), 37° 37’ N 27° 22’ E, 15.04.2000; 1 ex., Söke (Büyük Menderes river), 37° 30’ N 27° 20’ E, 19 m, 23.06.2002; Burdur: 1 ex., Yeşilova (Bayındır village), 37° 39’ N 29° 45’ E, 1030
m, 20.06.2002; Konya: 1 ex., between Taşkent and Alanya (20 km), 36° 51’ N 32° 31’ E, 1740 m, 20.04.2001.

Literature records from Turkey: Afyon, Aksaray, Erzurum, İzmir, Nevşehir (Guéorguiev, 1981; Darılmaz & Kıyak, 2006).

Remarks: New to Aydın, Burdur and Konya.

Subfamily Dytiscinae Leach, 1815

Tribe Aciliini Thomson, 1867

Graphoderus cinereus (Linnaeus, 1758)

Material examined: Afyon: 2 ex., Dinar (vicinity of Elmalı village, Pınarbaşı lake), 38° 04’ N 30° 16’ E, 1113 m, 22.06.2000; 1 ex., Dinar (Elderesi, Pınarbaşı lake), 38° 04’ N 30° 16’ E 1020 m 28.05.2002.

Literature records from Turkey: Ağrı Mountain (Guéorguiev, 1981).

Remarks: This species is new to the south and west Anatolia regions.

Tribe Cybistrini Sharp, 1882

Cybister (Cybister) tripunctatus lateralis (Fabricius, 1798)

Material examined: Aydın: 1 ex., Söke (Avşar, Azap lake), 37° 35’ N 27° 26’ E, 37 m, 23.06.2001.

Literature records from Turkey: Adana, İzmir, Mersin (Guéorguiev, 1981).

Remarks: New to the southwestern Anatolian region.

Cybister (Scaphinectes) lateralimarginalis torquatus (Fischer von Waldheim, 1829)

Material examined: Denizli: 4 ex., Çivril (vicinity of Beydilli village, Işıklı lake), 38° 11’ N 30° 03’ E, 920 m, 22.06.2000; 1 ex., Çivril (Bucak, Işıklı lake), 38° 14’ N 29° 51’ E, 838 m, 26.06.2001; 1 ex., Çardak (Gemiş, Acıgöl), 37° 46’ N 29° 50’ E, 860 m, 20.06.2002; Burdur: 2 ex., Yazır lake, 36° 59’ N 29° 44’ E, 1515 m, 23.06.2000.

Literature records from Turkey: Adana, Eskişehir, İzmir, Konya, Mersin, Van (Guéorguiev, 1981).

Remarks: New to the southwestern Anatolian region.

Tribe Dytiscini Leach, 1815

Dytiscus circumflexus Fabricius, 1801

Material examined: Aydın: 1 ex., Söke (Yenidoğan road), 37° 37’ N 27° 22’ E, 15.04.2000.

Literature records from Turkey: Adana, Balıkesir, Iğdır, Isparta, Kars, Kütahya (Guéorguiev, 1981).

Remarks: New to Aydın.

Dytiscus dimidiatus Bergsträsser, 1778

Literature records from Turkey: Manisa (Guéorguiev, 1981).

Remarks: This species is also known in Samsun province (ponds near the village of Çarşamba, 11.07.1992, 2 specimens, leg. M. Toledo) from Turkey (pers. comm.).
Dytiscus marginalis marginalis Linnaeus, 1758

Material examined: Antalya: 1 ex., Beşkonak (between Çalıştepe and Değirmenözu, Kanlı brook), 37° 20' N 31° 13' E, 492 m, 26.06.2000; 1 ex., Alanya (Güney village, Zeytinbükü brook), 36° 40' N 31° 53' E, 125 m, 11.07.2000; Denizli: 2 ex., Civril (Gökgöl), 38° 11' N 30° 03' E, 835 m, 20.04.2002; Isparta: 4 ex., Yalvaç (Sultan mountains), 38° 15' N 31° 22' E, 1565 m, 15.09.2000; Konya: 1 ex., Hadim (vicinity of Ardıçpinar fountain), 36° 53' N 32° 23' E, 1930 m, 11.07.2001; Muğla: 3 ex., Ula (Gölcük), 37° 07' N 28° 31' E, 690 m, 18.07.2000.

Literature records from Turkey: Adapazarı, Ankara, Iğdır, Kars, Kayseri, Nevşehir (Guéorguiev, 1968, 1981).

Remarks: This species is new to the south and west Anatolia regions.

Dytiscus semisulcatus O.F. Müller, 1776

Material examined: Isparta: 1 ex., Aksu (Karağı village), 37° 45' N 31° 07' E, 1210 m, 10.08.2000; Muğla: 2 ex., Köyceğiz (Yayla village, Gölgeli mountains), 37° 03' N 28° 47' E, 1730 m, 17.07.2000.

Literature records from Turkey: Without detailed locality data (Guéorguiev, 1981; Nilsson, 2005).

Remarks: This species is confirmed for Turkey and the first detailed records are given.

Tribe Eretini Crotch, 1873

Eretes griseus (Fabricius, 1781)

Material examined: Antalya: 1 ex., Serik (Kırbaş village, water accumulation), 37° 09' N 30° 49' E, 57 m, 19.08.2001.

Literature records from Turkey: Without detailed locality data (Miller, 2002; Nilsson, 2005).

Remarks: This species is confirmed for Turkey and the first detailed records are given.

Tribe Hydaticini Sharp, 1882

Hydaticus (Guignotites) ponticus Sharp, 1882

Material examined: Aydın: 1 ex., Nazilli (Esenköy, Akçay), 37° 47' N 28° 18' E, 75 m, 12.09.2001; Burdur: 1 ex., Çavdır (Yamadı village), 37° 07' N 29° 36' E, 960 m, 22.06.2002.

Literature records from Turkey: Without detailed locality data (Guéorguiev, 1981; Nilsson, 2005).

Remarks: This species is confirmed for Turkey and the first detailed records are given.

Hydaticus (Hydaticus) transversalis laevisculpatus Zaitzev, 1910

Material examined: Denizli: 1 ex., Acıpayam (Yeniköy, water channel), 37° 22' N 29° 25' E, 863 m, 07.08.2000.

Literature records from Turkey: Adana, Kütahya (Guéorguiev, 1981).

Remarks: New to the southwestern Anatolian region.
Subfamily Hydroporinae Aubé, 1836
Tribe Bidessini Sharp, 1882

Bidessus anatolicus anatolicus Wewalka, 1972
Literature records from Turkey: Adana, Antalya (Guéorguiev, 1981; Biström, 1987).

Bidessus calabricus Guignot, 1957

Bidessus delicatulus (Schaum, 1844)

Bidessus nasutus Sharp, 1887
Literature records from Turkey: Konya, Isparta (Guéorguiev, 1981).

Hydroglyphus geminus (Fabricius, 1792)
Material examined: Muğla: 4 ex., border of Muğla (Gazeller, Akçay), 37º 20’ N 28º 43’ E, 440 m, 22.06.2001.

Tribe Hydroporini Aubé, 1836

Deronectes parvicollis (Schaum, 1864)
Material examined: Isparta: 1 ex., Yalvaç (the northwest of Sultan mountains), 38º 15’ N 31º 18’ E, 1438º m, 19.07.2001.
Literature records from Turkey: Adana, Bilecik, Erzurum, Niğde, Yozgat (Guéorguiev, 1981; Fery et. al., 2001).
Remarks: New to the southwestern Anatolian region.

Deronectes sahlbergi Zimmermann, 1932
Literature records from Turkey: İzmir, Bilecik, Muğla (Guéorguiev, 1981; Fery et. al., 2001).

Deronectes wittmeri Wewalka, 1971
Literature records from Turkey: Antalya (Guéorguiev, 1981).

Graptodytes veterator behningi Zaitzev, 1927

Hydroporus bodemeyeri Ganglbauer, 1900
Literature records from Turkey: Adana, Adapazari, Anlara, Bilecik, Bolu, Isparta, İzmir, Muğla (Guéorguiev, 1981).
Hydroporus kozlovskii Zaitzev, 1927
Literature records from Turkey: Antalya, Artvin, Bingöl, Erzincan, Gümüşhane, Kars, Muğ, Rize (Guéorguiev, 1981; Shaverdo, 2004).

Hydroporus marginatus (Duftschmid, 1805)
Material examined: Muğla: 1 ex., Köyçeğiz (Yayla village, Gölgelı mountains), 37º 03’ N 28º 47’ E, 1730 m, 17.07.2000.
Literature records from Turkey: Ankara, Kars, Konya, Sivas, Trabzon (Guéorguiev, 1981).
Remarks: This species is new to the south and west Anatolia regions.

Hydroporus planus (Fabricius, 1781)
Material examined: Antalya: 1 ex., Elmalı (Armutlu village), 36º 33’ N 29º 43’ E, 1130 m, 22.04.2001.
Literature records from Turkey: Adana, Balıkesir, Bursa, Erzincan, İstanbul, Kars, Trabzon (Guéorguiev, 1981).
Remarks: New to the southwestern Anatolian region.

Hydroporus pubescens (Gyllenhal, 1808)
Literature records from Turkey: Adana, Aksaray, Antalya, Bilecik, Bursa, Erzincan, Gümüşhane, İzmir, Manisa, Niğde, Ordu, Sakarya, Trabzon (Guéorguiev, 1981; Darılmaz & Kıyak, 2006).

Nebrioporus (Nebrioporus) suavis (Sharp, 1882)
Material examined: Antalya: 6 ex., Ibradı (Ürünlü village, Altınbeşik cave), 37º 02’ N 31º 36’ E, 800 m, 03.08.2000; 1 ex., Kaş (exit road of Gombe) 36º 30’ N 29º 35’ E, 1260 m, 19.07.2001; Muğla: 1 ex., Dalaman (between Yaniklar and İnlıce), 22.05.2000.
Remarks: New to Isparta and Muğla.

Nebrioporus (Nebrioporus) turca (Seidlitz, 1887)
Material examined: Antalya: 1 ex., Finike (between Yazır and Kıltepe, Akçay), 36º 34’ N 29º 57’ E, 21.05.2000; 1 ex., between Bağhacaç village and Kayadibi village, 22.05.2000; Isparta: 1 ex., Centrum, (vicinity of Güneyce) 37º 39’ N 30º 43’ E, 666 m, 23.08.2001; Konya: 1 ex., Hadim (vicinity of Ardiçpinari fountain), 36º 53’ N 32º 23’ E, 1930 m, 11.07.2001

Oreodytes davisii davisii (Curtis, 1831)
Material examined: Antalya: 2 ex., Elmali (Akçay, exit road of Avşar village), 36º 33’ N 29º 43’ E, 1116 m, 21.05.2000.
Literature records from Turkey: Erzurum (Erman & Erman, 2002).
Remarks: The first record of O. davisii davisii from Turkey was given by Erman & Erman (2002). In this study the second record is given for Turkey. Also this species is new to the south and west Anatolia regions.
Scarodytes halensis halensis (Fabricius, 1787)

Material examined: Antalya: 4 ex., Alanya (Yeşilöz brook), 36° 22' N 32° 11' E, 20 m, 26.05.2001; 7 ex., between Gazipaşa and Kocadere, 36° 15’ N 32° 19’ E, 30 m, 26.05.2001; 1 ex., Alanya (Demirtaş, Serde stream), 36° 24’ N 32° 10’ E, 10 m, 27.06.2002; 8 ex., Gazipaşa (Gazipaşa stream), 36° 15’ N 32° 19’ E, 25 m, 27.06.2002; Isparta: 1 ex., Sütçüler (the south of Sipahiler), 37° 38’ N 30° 58’ E, 1209 m, 26.06.2000; 1 ex., Sütçüler (Sipahiler, Taşlıkkır brook), 37° 38’ N 30° 59’ E, 1185 m, 15.07.2000; 6 ex., Aksu (Karaği village, brook), 37° 45’ N 31° 07’ E, 1220 m, 14.09.2000.

Remarks: New to Antalya.

Tribe Hydrovatini Sharp, 1882

Hydrovatus cuspidatus (Kunze, 1818)

Literature records from Turkey: Afyon, Adana (Guéorguiev, 1981).

Tribe Hygrotini Portevin, 1929

Hygrotus (Coelambus) confluens (Fabricius, 1787)

Hygrotus (Coelambus) lernaeus (Schaum, 1857)

Hygrotus (Hygrotus) inaequalis (Fabricius, 1777)

Subfamily Laccophilinae Gistel, 1856

Tribe Laccophilinini Gistel, 1856

Laccophilus hyalinus hyalinus (De Geer, 1774)

Material examined: Antalya: 1 ex., Finike (between Yazır and Kılmetepe, Akçay), 36° 34’ N 29° 57’ E, 21.05.2000; 5 ex., Elmali (Akçay, exit road of Avşar village), 36° 33’ N 29° 43’ E, 116 m, 21.05.2000; 4 ex., Manavgat (Boztepe, Alara stream), 36° 39’ N 31° 39’ E, 20 m, 21.04.2001; 1 ex., Alanya (Yeşilöz stream), 36° 22’ N 32° 11’ E, 20 m, 26.05.2001; 1 ex., Manavgat (Boztepe, Alara stream), 36° 51’ N 30° 37’ E, 15 m, 26.05.2001; 1 ex., Kalkan (Yeşilköy), 36° 17’ N 29° 19’ E, 8 m, 27.05.2001; 1 ex., Korkuteli (Söğüçük village), 37° 01’ N 30° 20’ E, 930 m, 26.06.2002; 1 ex., Manavgat (Hocalar village, Sarisu), 36° 52’ N 31° 15’ E, 22 m, 26.06.2002; Burdur: 2 ex., Karamanlı (Kilavuz village), 37° 22’ N 29° 52’ E, 1062 m, 23.06.2000; 4 ex., Göllhisar (Göllhisar lake), 37° 07’ N 29° 36’ E, 960 m, 13.09.2001; Isparta: 1 ex., Aksu (Karaği village, brook), 37° 45’ N 31° 07’ E, 1220 m, 14.09.2000; Konya: 1 ex., between Taşkent and Alanya (20km), 36° 51’ N 32° 31’ E, 1740 m, 20.04.2001.
Literature records from Turkey: Adana, Afyon, Aksaray, Aydın, Bolu, Isparta, İzmir, Kırşehir, Kılıs, Manisa, Sakarya (Guéorguiev, 1981; Darılmaz & Kıyak, 2006).

Remarks: New to Antalya, Burdur and Konya.

Laccophilus minutus (Linnaeus, 1758)

Material examined: Antalya: 1 ex., between Bağlıağaç village and Kayadibi village, 22.05.2000; 1 ex., Manavgat (Boztepe, Alara stream), 36° 39’ N 31° 39’ E, 20 m, 21.04.2001; 1 ex., between Gazipaşa and Kocadere 36° 15’ N 32° 19’ E, 30 m, 26.05.2001; Aydın: 1 ex., Söke (Avşar, Azap lake), 37° 35’ N 27° 26’ E, 37 m, 23.06.2001; Burdur: 2 ex., Karamanlı (Karamanlı dam), 37° 24’ N 29° 49’ E, 1206 m, 27.06.2001; 1 ex., Gölcük lake, 37° 07’ N 29° 36’ E, 960 m, 20.08.2001; Denizli: 1 ex., Buldan (Süleymanlı lake), 38° 03’ N 28° 46’ E, 1175 m, 19.05.2001; Isparta: 1 ex., Eğirdir (Kovada dam), 37° 20’ N 30° 52’ E, 920 m, 21.06.2001; 1 ex., Gölcük lake, 37° 43’ N 30° 30’ E, 1410 m, 28.06.2001.

Literature records from Turkey: Adana, Antalya, Aydın, Bolu, Isparta, İzmir, Konya, Manisa, Nevşehir (Guéorguiev, 1981; Darılmaz & Kıyak, 2006).

ACKNOWLEDGEMENTS

We thank Dr. M. Toledo (Italy) for contribution on distributional data of *D. dimidiatus*.

LITERATURE CITED

Erman, Ö. K. & Erman, O. 2002. First records of *Oreodytes Seidlitz, 1887* (Dytiscidae, Coleoptera) from Turkey: *Oreodytes septentrionalis* (Gyllenhal, 1826) and *Oreodytes davisii* (Curtis, 1831). Turkish Journal of Zoology, 26: 295-299.

Fig. 1. Map of the southwestern Anatolian region of Turkey (delimited by bold line).
NEW SUBSTITUTE NAMES FOR THREE PREOCCUPIED LEPIDOPTERAN GENERA:
HERCYNELLA BETHUNE-BAKER, 1893, COLONEURA DAVIS, 1964 AND PARAGORGOPIS VIETTE, 1951
(LEPIDOPTERA)

Hüseyin Özdikmen*

* Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara, TÜRKİYE, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: Three junior homonyms were detected amongst the Lepidopteran genera and the following replacement names are proposed: Tulaya nom. nov. for Hercynella Bethune-Baker, 1893; Neocoloneura nom. nov. for Coloneura Davis, 1964; Vietteogorgopis nom. nov. for Paragorgopis Viette, 1951. Accordingly, new combinations are herein proposed for the species currently included in these genera: Tulaya staudingeri (Bethune-Baker, 1893) comb. nov. and Tulaya margelana (Bethune-Baker, 1893) comb. nov. from Hercynella Bethune-Baker, 1893; Neocoloneura fragilis (Barnes & McDunnough, 1916) comb. nov. from Coloneura Davis, 1964; Vietteogorgopis foetterlei (Viette 1951) comb. nov., Vietteogorgopis jordani (Viette 1956) comb. nov., Vietteogorgopis nigrovenosalis (Viette 1956) comb. nov., Vietteogorgopis oreas (Schaus 1892) comb. nov., Vietteogorgopis pittonii (Viette 1951) comb. nov., Vietteogorgopis schausi (Viette 1951) comb. nov. and Vietteogorgopis spitzi (Viette 1956) comb. nov. from Paragorgopis Viette, 1951.

KEY WORDS: nomenclatural changes, homonymy, replacement names, Lepidoptera.

Family Crambidae
Genus Tulaya nom. nov.

Remarks: Bethune-Baker (1893) proposed the generic name Hercynella with the type species Hercynella staudingeri Bethune-Baker, 1893 by subsequent designation by Collins, 1962 in Lepidoptera. Fletcher & Nye (1984) mentioned that Hercynella was not placed in a family when established. It was placed in the Pyralidae: Pyraustinae by Hampson, 1899 and in Pyralidae: Odontiinae by Munroe, 1961. At present, the subfamily Odontiinae is in the family Crambidae. Unfortunately, the generic name was already preoccupied by Kayser, (1878), who had described the genus Hercynella for a fossil bivalve in Mollusca (Gill 1950; Prantl 1960; Vai 1965; Blötget al. 2001; Kříž, 2001). Thus, Hercynella Bethune-Baker, 1893 is invalid under the law of homonymy, being a junior homonym of Hercynella Kayser, 1878. In accordance with article 60 of the International Code of Zoological Nomenclature, fourth edition (1999), we propose for the genus...
Hercynella Bethune-Baker, 1893 the new replacement name Tulaya nom. nov.

Etymology: The name dedicated to Tülay Özdikmen. The name is feminine in gender.

Summary of nomenclatural changes

Tulaya new replacement name = Hercynella Bethune-Baker, 1893 (non Kayser, 1878).
Tulaya staudingeri (Bethune-Baker, 1893) comb. nov. from Hercynella Bethune-Baker, 1893.
Tulaya margelana (Bethune-Baker, 1893) comb. nov. from Hercynella Bethune-Baker, 1893.

Family Psychidae

Genus Neocoloneura nom. nov.

Remarks: The name Coloneura was initially introduced by Foerster (1862) for a genus of the wasp family Braconidae (with the type species Coloneura stylata Foerster, 1862. Subsequently, Davis (1964) described a new moth genus of the family Psychidae (with the type species Apterona fragilis Barnes & McDunnough, 1916 by original designation) under the same generic name. This genus is monotypic. Thus, Coloneura Davis, 1964 is invalid under the law of homonymy, being a junior homonym of Coloneura Foerster, 1862. Furthermore, Nye & Fletcher (1991) also stated that Coloneura Davis, 1964 is a junior homonym of Coloneura Foerster, 1862. Unfortunately, there is no objective replacement name at the present. In accordance with article 60 of the International Code of Zoological Nomenclature, fourth edition (1999), I propose for the genus Coloneura Davis, 1964 the new replacement name Neocoloneura nom. nov.

Etymology: from current genus name.

Summary of nomenclatural changes

Neocoloneura new replacement name = Coloneura Davis, 1964 (non Foerster, 1862).

Family Hepialidae

Genus Vietteogorgopis nom. nov.

Remarks: Firstly, the genus *Paragorgopis* was established by Giglio-Tos, 1893 for the fly family Ulidiidae with the type species *Paragorgopis maculata* Giglio-Tos, 1893. At present, the genus *Paragorgopis* Giglio-Tos, 1893 includes 12 species as *Paragorgopis argyrata* Hendel, 1914; *Paragorgopis cancellata* Hendel, 1909; *Paragorgopis clathrata* Hendel, 1914; *Paragorgopis euryale* Kameneva, 2004; *Paragorgopis ineus* Kameneva, 2004; *Paragorgopis maculata* Giglio-Tos, 1893; *Paragorgopis mallea* Hendel, 1909; *Paragorgopis medusa* Kameneva, 2004; *Paragorgopis schnusei* Hendel, 1909; *Paragorgopis stapes* Kameneva, 2004 and *Paragorgopis stheno* Kameneva, 2004. Later, the genus *Paragorgopus* was proposed by Viette, 1951 for the moth family Hepialidae with the type species *Paragorgopis pittionii* Viette, 1951 by original designation. Furthermore, *Paragorgopis* Viette, 1951, [a junior homonym of *Paragorgopis* Giglio-Tos, 1893 - Diptera] was downgraded to denote a subgenus of *Aepytus* Herrich-Schäffer, [1858] by Nielsen and Robinson, 1983. Also, Nye & Fletcher (1991) stated that *Paragorgopis* Viette, 1951 is a junior homonym of *Paragorgopis* Giglio-Tos, 1893. Unfortunately, there is no objective replacement name at the present. Thus, the name *Paragorgopis* Viette, 1951 is invalid under the law of homonymy, being a junior homonym of *Paragorgopis* Giglio-Tos, 1893. Also, In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name *Paragorgopis* Viette, 1951 for the nom. nov. Vietteogorgopis.

Etymology: from Viette who current author name of preexisting genus *Paragorgopis*.

Summary of nomenclatural changes

Vietteogorgopis new replacement name = *Paragorgopus* Viette, 1951 (non Giglio-Tos, 1893).

Vietteogorgopis foetterlei (Viette 1951) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis jordani (Viette 1956) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis nigrovenosalis (Viette 1956) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis oreas (Schaus 1892) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis pittionii (Viette 1951) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis schausi (Viette 1951) comb. nov. from *Paragorgopis* Viette, 1951.

Vietteogorgopis spitzi (Viette 1956) comb. nov. from *Paragorgopis* Viette, 1951.

LITERATURE CITED

Kříž, J. 2001. Enantiomorphous dimorphism in Silurian and Devonian bivalves; *Maminka* Barrande, 1881 (Lunulacardiidae, Silurian)—the oldest known example. Lethaia 34: 309–322.

SOME BIOLOGICAL AND ECOLOGICAL REMARKS ON
TRICHOUROPODA ORBICULARIS, A PEST
OF HARVESTED MAIZE GRAINS AND
A LARVIPAROUS UROPODID MITE
(ACARI: MESOSTIGMATA: UROPODINA)

Durmuş Ali Bal* and Muhlis Özkan**

* Atatürk University, Education Faculty, Erzincan / TÜRKİYE. E-mail: bal@atauni.edu.tr
** Uludağ University, Education Faculty, Bursa / TÜRKİYE. E-mail: muozkan@uludag.edu.tr

ABSTRACT: Morphological features and geographic distribution of Trichouropoda orbicularis are given and larva, deutonymph and adults of the species are described with original figures. Larviparity is reported for the species first time. Larva is extracted by microoperation from the body of female and then studied. It is emphasized that the species is a stored food mite and contaminate harvested maize grains.

KEY WORDS: Acari, Uropodina, Trichouropoda orbicularis, larviparity, Turkey

Hirschmann and Wiśniewski (1986, 1987, 1988, 1989, 1993) extensively studied the cosmopolitan genus Trichouropoda, which includes 394 species (Wiśniewski, 1998). Some uropodid specimens from corn threshing were collected in the Artvin, Rize and Trabzon provinces in Turkey. Among these materials, Trichoropoda orbicularis was new for the Turkish acarofauna (Özkan et al., 1988; 1994). Examining the species, it was realized that females were apparently larviparous and containing about 2 small larvae in the body cavity. Here, the larva, deutonymph and adults of the species were described, based on our specimens, and presented additional morphological data for comparison with other populations.

MATERIALS AND METHOD

Samples were collected using standard methods for acarological studies. Specimen collection, extraction, preservation and preparation for examination were discussed by Bal (2005), and Bal & Özkan (2006). All measurements are in µm. Specimens are mounted in Hoyer’s medium and examined with a Nikon E-600 compound microscope equipped with differential interference contrast and phase contrast systems.

The speciemens were deposited in Bal’s mite collection, Erzincan Education Faculty, Erzincan, Turkey.
Systematics

Trichouropoda orbicularis (C. L. KOCH, 1839) - sensu HIRSCHMANN and WIŚNIEWSKI, 1988

Synonyms:
Notaspis orbicularis C.L. KOCH, 1839
Uropoda krameri G. Canestrini, 1882
Urodinychus krameri Trägardh, 1912
Urodinychus (Leiodinychus) krameri (G. Canestrini, 1882) – sensu Berlese, 1917
Leiodinychus orbicularis (C. L. Koch, 1882) – sensu Błoszyk, 1984

Female

Idiosoma oval, 720 long, 580 wide, slightly narrowed at the front end, well chitinized and brown. Dorsal plate intact, and surrounded an entire marginal plate, both plates with web-like patterns, and all dorsal-shields setae short, thorn-like, not reaching insertion of following setae (Figure 1A).

Epigynial shield 275 long and 180 wide, helmet-like, anterior prolongation spear-like, the shield begins behind coxae IV and ends in the space coxa I. Surface of the epigynial shield with a web-like pattern, and its inner surface denticled superficially at anterior half. Anterior prolongation of the peritremes starts at the level of coxae II, twisted between coxae II-III, its anterior prolongation hook-like and directed inner ward, and the stigmatal openings end with a very short prolongation. Surface of the sternal plate bears a web-like pattern and five pairs of short setae (*st1, st2, st3, st4, st5*). Ventral plates and all pedofossae with web-like ornamentation (Figures 1B, 2I). Pedofossal groove distinct and well developed. Anal opening 40 long and 27.7 wide. All ventral setae short and thorn-like, about 13 long. Postanal seta present and resembling the other ventral setae. Distance between coxae II, III and IV: 115, 165, 212 respectively (Figures 1B, 4).

Chelicerae with nodus, multidentate, the movable digit 30 μm, middle part 120 μm (Figure 2A). Setae *h1* thorn-like, almost reaching the end of the lacinae; setae *h2, h3* and *h4* branched. Corniculus three-pronged, with blunt ends. Hypostomal constrictions between *h3-h4* (Figures 2B, C, D); Epistome with a pyramid-like base, with gradually shortented denticles, the anterior part long, without denticles and dager-like (Figure 2 H). Tritosternum cup-shaped basally, bearing a denticle medio-laterally, and lacina with denticles laterally and splitted two feathered ends (Figures 2 E-F). Palps as in Figure 2 J.

Coxa I large, tarsi on all legs bear a pairs of digits at tip of ambulacral prolongation; setae on legs thorn-like, but some branched. All femora bear a membranous chitin flap (Figures 3 A-D).
Male

Idiosoma 720-740 long, 570-600 wide; epigynial shield horseshoe-shaped and placed between coxae II-III, surrounded by an arch posteriorly; opercular opening 62.5 long and 52.5 wide. Sternal plate large and with five pairs of setae (st1, st2, st3, st4, st5), thorn-like and straight; sternal setae in line, but st5 and st5' close to each other. All ventral plates with a web-like pattern, including surface of genital cover. Sternal patterns horizontal. Sexual dimorphism occurs hypostomal setae; h2 short and knife-like, h3 smooth and fairly long, h1 smooth, and h4 pilose (Figure 3B). Other morphological features, setal arrangement, body shape and patterns as in females (Figure 5).

Deutonymph

Idiosoma 560-580 long, 450-490 wide. Hypostomal setae h2-h4 branched and pilose. All idiosomal plates with web-like pattern (Figure 6); all dorsal and ventral setae thorn-like (Figures 6A, B); sternal plate anvil-like, and bearing five pairs of setae (st1, st2, st3, st4, st5). Ventrianal plate setae V2, V3, V4, V6 and V8 occurs on the plate, but V7 - V7' arise out of soft leathery integument of sternal and anal plates. Anal plate boat in shape and postanal seta present. Distance between coxae II, III and IV: 97, 150, 195, respectively. Coxa I large, placed close to each other; pedofossae distinct, well developed. Anterior peritreme prolongation twisted, long, its posterior part straight and short (Figure 6B).

Larva

Idiosoma 390 long, 285 wide; podonotal plate lancet-like; pygidial shield half moon-like; peripheral platelets of the podonotal plate larger than central ones; margins of platelets indented or smooth; leathered area ornamented with bead-like small tubercles. Podonotal plate with five pairs of setae (i2, i3, i4, i5, z2), and five pairs of setae (i1, s2, z1, s5, s7) also occur laterally on anterior half of the body. Setae i1, s2, z1, s5 branched and pilose, however all the other posterior setae not branched, short, smooth and thorn-like. One pair of setae (I2) arises on leathered area between posterior and pygidial plates; setae S2, S3, S4, S5, I3, I4, I5 and Z4 laterally from posterior leathered area (Figure 7A).

Sternal plate in two parts, setae v1 located on the anterior ventral platelet. Posterior sternal plate rectangular, with setae v2 and v3; a pair of inguinalia situated behind coxae III; setae V2 and V6 arise from ventral leathered area; setae S2, S3, S4, Z3, S5, I5 arise from leathered area laterally; setae V4, V6 and postanal seta (U) thorn like and not branched. Peritremata not clear. Surface of ventral plate ornamented with bead-like small tubercles (Figure 7A).
Examined Materials and localities

Artvin province: (41° 166’ N, 41° 833’ E), 9.IX.1993, 3 ♀ 2 ♂, 1 DN., each female bearing two larvae or two eggs; from corn, *Zea mays*, threshing.

Rize province: (41° 005’ N, 40° 527’ E), 19.V.2005, 1 ♀♀, female bearing two larvae, 1 ♂♂, from corn, *Zea mays*, threshing.

Trabzon province: (40° 957’ N, 39° 906’ E), 9.V.2003, 5 ♀♀, 3 ♂♂, 2 DN.; each female bearing two larvae or two eggs; *Zea mays.*

Samples were some wet.

Altitude: 100-300 m. a.s.l.

Distribution: *Trichouropoda orbicularis* is distributed in *Palearctic region* (Belgium, Germany, France, Great Britain, Iceland, Netherlands, Austria, Poland, Romania, Czech Republic, Slowakia, Ukraina, Hungaria, Algeria, Italy, Spain), *Oriental region* (India) and *Ethiopian region* (Congo) (Hirschmann and Wiśniewski, 1993).

The species is new for the Turkish fauna.

Remarks

T. orbicularis is collected from the provinces of Artvin, Rize and Trabzon on the coast of the eastern Black Sea Region, Turkey. Annual average temperature of this region ranges between 13-15˚C. With the oreographic precipitation caused by air masses from the north and northwest, the region shows the features of ocean-climate due to East Black Sea Mountains range up to 3000 meters high. This region is the wettest region in Turkey, and annual average precipitation varies from 1500 to 2500 mm. The general composition of the forests is made up of *Fagus orientalis, Carpinus orientalis, Prunus laurocerasus, Rhododendron caucascus, R. ponticus, Tilia rubra, Castanea sativa, Acer platanoides, Ulmus campestris, Ulmus montana, Quercus petraea, Lonicera caucascica, Viburnum lantana, Buxus sempervirens, Taxus baccata, Sorbus terminalis, Ribes beibersteinii, Euonymus europaeus, Ostrya carpinofolia, Corylus avellana, Rubus sp.* and some ferns. Cultural plants such as cor, tea, hazelnut grow in the fields at the height of 1500 meters on this coastal zone. The flora in the form of scrub and arboreal is dominant under the high level damp climatic conditions. The forests of spruce trees exist only in this region of Turkey. The region has alkali soil characteristics, while dark brown forest soil has appeared (Atalay and Mortan, 2003).

Larviparity is an interesting phenomenon in Uropodid mites. Four larviparous mites are reported from Uropodina, so far. *Trichouropoda orbicularis* is the fifth report for larviparity, no other record has been recorded for Uropodid mites. Two species of *Trichouropoda* (*T. obscura, T. ovalis*) were reported as larviparous by Kielczewski and Wiśniewski in (1977). Zugalev collected one *Macrodinychus* female.
containing about 30 larvae in her body cavity, on May 1965. Bregetova first reported that females of mites of the genus *Macrodinychus* are apparently larviparous, at Acarological Congress in Saalfaden in 1974 (Kielczewski and Wiśnewski, 1977). Recently, some larviparous or viviparous *Macrodinychus bregetovae* specimens have been collected from Turkey by Bal (2005). A *Macrodinychus* species, *Macrodinychus (M.) paraguayensis* Hirschmann 1975, collected by Balogh, was larviparous. Also, females of this species were containing about 30 small larvae in the body cavity.

Turkish specimens agree with other given Paleartic specimens, but deutonymphs are predominant, and a ventral setae is present additionally. Females of Turkish specimens are larviparous and contain two larvae in their body cavities (Fig. 4).

Bloszyk (1999) noted that *T. orbicularis* prefer unstable microhabitats (especially nests of birds), and Slovak specimens especially collected from nests of birds (personal communication with Dr. Mańán). Bloszyk (1999) says it would probably be phoretic species. It is possible that the species eat waste material of birds there. As a final note for the species, each female bears two larvae or eggs; egg 275 long and 175 wide, and the size of the larva appropriate for birth. Pregnant females indicate that Larvae are give birth in the months December and January.

Abbreviations

bp: base part; \(h1-h4\): hypostomal setae; Co: corniculus; DN.: deutonymph; fd: fixed digit; md: chelicer movable digit; mp: chelicer middle part; i-I: dorsocentral setae series; la: lacina; no: nodus; Pe: Peritrema; PN.: protonymph; r-R: marginal setae series; s-S lateral setae series; U: posterioanal seta; v-V: ventral setae series; z-Z: mediolateral setae series.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Peter MAŠÁN (Institute of Zoology, Slovak Academy of Sciences, Bratislava), since he supported us with additional European *T. orbicularis* specimens to compare with the Turkish specimens.

LITERATURE CITED

Figure 1. A) *Trichouropoda orbicularis*: Dorsal view of female; B) Ventral view of female.

Figure 3. *Trichouropoda orbicularis*: male; A) Leg I, B) Leg II, C) Leg II, D) Leg IV

Figure 4. *Trichouropoda orbicularis*: Ventral view of female and larviparous larvae.
Figure 5. *Trichouropoda orbicularis*: Ventral view of male.

Figure 6. A) *Trichouropoda orbicularis*: A) Dorsal view of deutonymphe, B) Ventral view of deutonymphe.
Figure 7. *Trichouropoda orbicularis*: A) Ventral view of larva, B) Dorsal view of larva.
TWO RECORDS NEW FOR THE TURKISH ARANEOPAUNA: *TMARUS PIOCHARDI* (SIMON, 1866) AND *MONAESES ISRAELIENSIS* LEVY, 1973 (ARANEAE: THOMISIDAE)

Abdullah Bayram*, Tarık Danışman*, Halil Bolu** and İnanç Özgen***

* Kırıkkale University, Sciences and Arts Faculty, Department of Biology, 71450 Yahşihan, Kırıkkale / TURKEY. e-mail: abdbayram@yahoo.com, tarikdani@yahoo.com
** Dicle University, Agriculture Faculty, Department of Plant Protect, 21000 Campus, Diyarbakır / TURKEY. e-mail: besni@dicle.edu.tr
*** Plant Protection Research Institute, 21100 Diyarbakır / TURKEY. e-mail: inancoz@yahoo.com

ABSTRACT: In this study, characteristic features of *Tmarus piochardi* (Simon, 1866) and *Monaeses israeliensis* Levy, 1973 which are new records for the Turkish spider fauna are given together with their distributions in Turkey and the World.

KEY WORDS: *Tmarus, Monaeses*, Thomisidae, Araneae, Turkey, New records.

The members of Thomisidae have crab-like legs and are often brightly coloured. These kind of spiders usually live on flowers, and they are well camouflaged and ambush pollinating insects of considerable size. They make no web but females cover their eggs with a silken shelter, usually under leaves. Several species can change colour to a certain degree to match the petals surface colour (Foelix, 1982 and Roberts, 1995). About 165 genera and 2000 species have been identified in Thomisidae across the world. In *Tmarus* Simon, has a wide distribution with approximately 170 described species worldwide while in *Monaeses* Thorell 27 species are known (Platnick, 2006). Three species of *Tmarus* are known from Israel; *T. piochardi*, *T. yerohamus* Levy, 1973 and *T. hazevensis* Levy, 1973 (Levy, 1973).

In *Monaeses*, *M. paradoxus* (Lucas, 1846) is known from Europe, Africa and Azerbaijan while *M. israeliensis* Levy, 1973 known from the Middle East and Central Asia (Simon, 1932; Levy 1973; Platnick, 2006).
Until this study no record was given in *Tmarus* and *Monaeses* except an unidentified specimen of *Tmarus* was given in Karol, 1967 (Bayram, 2002; Topçu et al., 2005).

This paper deals with the characteristic features and distributions of *Tmarus piochardi* and *Monaeses israeliensis* and adds two species to the spider fauna of Turkey.

MATERIALS AND METHOD

Specimens were collected from two different localities of Turkey: Southeast Anatolia (Diyarbakır, Çermik, 39°35’East-38°10’North) and Southwest Anatolia (Antalya, Serik, 31°7’East-36°55’North, fig. 1). The specimens were obtained from almond gardens, cornfields and meadows. The materials were placed into 70 % ethanol, carried to the zoological laboratory and identified with a SMZ800 Stereo microscope. The keys of Heimer & Nentwig, 1991; Roberts, 1995 and Tyschchenko, 1971 were used. The drawings was made by means of a camera lucida attached to the microscope. The specimens examined were stored in the Zoological Museum of Kırıkkale University.

RESULTS

Key for the genera

1. Carapace strongly convex, usually same length as width. Ocular area much elevated; anterior and posterior lateral eyes are on large separated tubercles and and distinctly larger than median eyes, distance between anterior median eyes slightly shorter than that of posterior median eyes. Legs spinous, two anterior pairs almost of same length, but clearly longer than two posterior pairs, there are no scopulae or claw tuft on the legs, claws with distinct denticles. Opisthosoma often angular and with a posterior large tubercle dorsally or whole posterior part rather elevated.. *Tmarus*

- Carapace slightly high and distinctly longer than wide. Ocular area slightly elevated, eyes on tubercles clearly separated from each other, lateral eyes distinctly larger than median eyes, distance between anterior median eyes shorter than that of posterior median eyes and forms a trapezium. Legs tick and very long, two anterior pairs clearly longer than posterior pairs, claws with large, distinct denticles. Opisthosoma long and slender, dorsally flat, posterior part cone-shaped, very elongated, extending far beyond spinnerets .. *Monaeses*
Tmarus piochardi (Simon, 1866)
Thomisus piochardi Simon, 1866, Ann. Soc. ent. Fr., (4) 6: 284
Tmarus piochardi Simon, 1875, Les Arachnides de France, Paris, 2: 261

Description

Body yellowish brown with scattered dark round dots. Carapace rounded, the length and width of carapace are approximately same (**fig. 2A**). Radial bands are brown and white. There are brown spines on brown dots on the radial bands. In lateral view, carapace is strongly convex. In lateral view, ocular area is much elevated; the anterior and posterior lateral eyes are on large separated tubercles. The lateral eyes are distinctly larger than the median eyes. The distance between the anterior median eyes is slightly shorter than the distance between the posterior median eyes. Clypeus narrow. Chelicerae toothless. Labium and maxilla are longer than wide.

Sternum is oval and yellow in colour. Anterior of sternum is straight. Legs are spinous. Leg formula is 2-1- 4- 3. The anterior pairs are clearly longer than the posterior pairs. There are no scopulae or claw tuft on the legs. Tarsi are with two claws that with distinct denticles. Opisthosoma is rather angular at the lateral margins. It is longer than wide, and with a posterior tubercle at the dorsum (**fig. 2B**). Dorsal of opisthosoma is cowered with brown and chalk-white mottles. There is a light brownish longitudinal and two or three brown transversal bands on the dorsum. Ventrum of opisthosoma with a dark longitudinal band, anterior of the band is darker.

Male

Measurements. Based on three males, means (n=3): total length of body 4.53 mm (range 4.4-4.7); carapace length 1.70 mm; carapace width 1.63 mm; carapace index 1.03; opisthosoma length 2.86; femur II length 3.26 mm; femur II width 0.33 mm; femoral index 9.87.

Palpus. Ventral tibial apophysis looks like a finger in shape, apically curved, thicker than the retro-lateral apophysis (**fig. 2C**). The retro-lateral apophysis black, basal part very broad, upper part of the apophysis heavy sclerotized and ended with a sharp point, ventral side deeply notched (**fig. 2D**).

Female

Measurements. Based on six females, means (n=6): total length of body 5.5 mm (range 4.5-6); carapace length 2.27 mm; carapace width 2.12 mm; carapace index 1.07; opisthosoma length 3.23 mm; femur II length 2.88 mm; femur II width 0.39 mm; femoral index 7.38.

Epigynum. The epigynum looks like a goblet. The upper part rounded,
base of this part pointed downward. Ratio of the holder width to goblet width is 1/2.8. The holder posteriorly narrowed, the sides sclerotized and black. There are double spots at anterior and posterior of epigynum (fig. 2E).

Material examined
Diyarbakır, Çermik Petrol (L1), 650 m (39º35´East-38º10’North), from almond trees (Amygdalus sp.), 05.VIII.2003, 3♂; 28.VII.2003, 2♀; 08.IX.2003, 3♀; Muğla, Datça (L2), 10 m (27º40’East-36º45’North), from an almond tree, 10.VIII.2004, 1♀.

Habitat and occurrence
Prefers the woody places, adult in summer. The specimens were collected from branches of almond trees in july, august and september.

Distribution
The Mediterranean countries, Yemen, India.

Monaeses israeliensis Levy 1973

Description
Prosoma reddish brown. Carapace slightly high and distinctly longer than wide (fig. 3A). Ocular area is slightly elevated. Eyes are on tubercles and clearly separated from each other. The lateral eyes are distinctly larger than the median eyes. The distance between the anterior median eyes shorter than that of the posterior median eyes. So, they form a trapezium. Legs yellow in colour, tick and very long. The first and second pairs clearly longer than the third and fourth pairs. The claws with large and distinct denticles. Opisthosoma pale yellowish grey. There is a light longitudinal band on the body. Also, venter of opisthosoma with a dark band along entire length. Opisthosoma is long and slender, dorsally flat. Posterior part of the opisthosoma is cone-shaped, very elongated and extending far beyond the spinnerets (fig. 3B).

Male
Measurements. Based on two males, means (n=2). Total length of body 6.5 mm (range 6.0-7.0), carapace length 2.1 mm, carapace width 1.4 mm, carapace index 1.49; opisthosoma length 4.4 mm; femur II length 3.1 mm, femur II width 0.28 mm, femoral index 11.07.

Palpus. Tibia with a ventral and retrolateral apophyses. The ventral apophysis is slightly curved, at lateral view the middle part is swollen, tip of the apophysis is terminating blunt. The retro-lateral apophysis is thick. The tip with three dents. The stem is stout, and there is a groove on the ventral side on the ventral view (fig. 3C-D).
Material examined
Antalya: Serik (L3), 40 m (31º7’East-36º55’North), from a cornfield, 15.VII.2005, 1♂; BeĢkonak, Köprülü Kanyon National Park, 1200 m (31º20´East - 37º10’North), from a meadow, 22.V.2005, 1♂.

Habitat and occurrence
Prefers dense vegetations, adult in summer months. The specimens were collected from low branches of agricultural plants such as corn and wheat in a period of may-july. It catches prey by ambush among lower branches of these plants.

Distribution
Israel, Lebanon and Central Asia.

DISCUSSION

There are great morphological variations in *Tmarus piochardi* especially in the opisthosoma shape as seen in some other species. As it is known the most familiar character is a horn-shape structure in *T. piochardi*. Sizes of this structure vary according to the specimen size. In some specimens, the structure looks like a blunt horn while in some others it is much more evident. In the latter, in lateral view, the opisthosoma is as if forked at the posterior. Even the horn part is greater and longer than the other part.

In this study, sizes of the Anatolian specimens were compared with the European and Israeli specimens. While the mean of the total length (body, males) is 4.5 mm, it is 4 in European specimens, and 5 in the Israeli specimens. The length mesurements of the females were also similar for the three populations. Also, carapace and femoral indexes of the males and females collected from Anatolia were found similar to that of European and Israeli specimens (Simon, 1932; Levy, 1973; Logunov, 1992).

As seen in *Tibellus* species, members of *Tmarus* stretch out their first and second legs in front, and take the colour of the branch for camouflage. For this reason like the body mesurements colour is also changeable.

In comparison of *Monaeses israeliensis* collected from Turkey and Israel, the body length of the males was 6-7 mm in Anatolian specimens, and 4-6 mm in Israeli specimens. Also, the carapace and femoral indexes of the two population were similar (Levy, 1973). *M. israeliensis* was recorded from Lebanon, Israel and Central Asia so far. In Turkey, *M. israeliensis* was collected from Antalya that a southern city. This species appear as a Mediterranean spider. It can be encountered in the southern, southeastern and even eastern parts of Turkey.

Fig. 1. The localities (L) where the spiders were collected in Turkey: *Tmarus piochardi* (Simon), L1, Çermik; L2, Datça; *Monaeses israeliensis* Levy, L3, Serik.

Fig. 2. *Tmarus piochardi*: Prosoma, female (Datça), dorsal view (A); Opisthosoma, female (Datça), lateral view (B); Male, left palpus (Çermik), lateral view (C); left palpus (Çermik), ventral view (D); Female (Çermik), epigyne, ventral view (E).
Fig. 3. *Monaes israeliensis* (Serik): Prosoma, male, dorsal view (A); Opisthosoma, male, lateral view (B); Male, palpus, lateral view (C); palpus, ventral view (D).
MUNIS ENTOMOLOGY & ZOOLOGY 1 (2): 137-142

NOMENCLATURAL CHANGES FOR SEVEN PREOCCUPIED SPIDER GENERA (ARACHNIDA: ARANEAE)

Hüseyin Özdikmen*

* Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara, TÜRKİYE, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: Seven junior homonyms were detected amongst the Araneae genera and the following replacement names are proposed: Mesudus nom. nov. for Manawa Forster, 1970 (Desidae); Locketella nom. nov. for Kuala Locket, 1982 (Linyphiidae); Millidgefa nom. nov. for Notiothauma Millidge, 1991 (Linyphiidae); Neovaldiviella nom. nov. for Valdiviella Millidge, 1985 (Linyphiidae); Eminella nom. nov. for Catuna Mello-Leitão, 1940 (Philodromidae); Necatia nom. nov. for Davidina Brignoli, 1985 (Salticidae); Euyselus nom. nov. for Propetes Menge, 1854 (Salticidae). Accordingly, new combinations are herein proposed for the species currently included in these genera: Mesudus solitarius (Forster, 1970) comb. nov., Mesudus frondosus (Forster, 1970) comb. nov. and Mesudus setosus (Forster, 1970) comb. nov. from Manawa; Locketella versa (Locket, 1982) comb. nov., Locketella fissivulva (Millidge & Russell-Smith, 1992) comb. nov. and Locketella pusilla (Millidge & Russell-Smith, 1992) comb. nov. from Kuala; Millidgefa aurantiaca (Simon, 1905) comb. nov. from Notiothauma; Neovaldiviella trisetosa (Millidge, 1985) comb. nov. from Valdiviella; Eminella ctenops (Mello-Leitão, 1940) comb. nov. from Catuna; Necatia magnidens (Schenkel, 1963) comb. nov. from Davidina; Euyselus felinus (Menge, 1854) comb. nov. from Propetes.

KEY WORDS: nomenclatural changes, homonymy, replacement names, spider, Araneae.

TAXONOMY

Family DESIDAE

Genus MESUDUS nom. nov.

Remarks: The name *Manawa* was initially introduced by Hornibrook, 1949 for a genus of the ostracod family Punciidae (with the type species *Manawa tryphena* Hornibrook 1949 from New Zealand). Subsequently, Forster, 1970 described a new spider genus of the family Desidae (with the type species *Manawa solitaria* Forster, 1970 from New Zealand) under the same generic name (Platnick, 2005). Thus, the genus *Manawa* Forster, 1970 is a junior homonym of the genus *Manawa* Hornibrook 1949. According to Article 60 of the International Code of Zoological Nomenclature, I propose for the genus *Manawa* Forster, 1970 the new replacement name *Mesudus nom. nov.* The name is dedicated to my colleague Mesud Güven. The name is masculine in gender.
Summary of nomenclatural changes:

Family LINYPHIIDAE

Genus LOCKETELLA nom. nov.

Remarks: The generic name *Kuala* Durette-Desset & Krishnasamy, 1976 was proposed for a genus of nematods. Subsequently, the generic name *Kuala* Locket, 1982 was introduced for a new spider genus (with the type species *Kuala versa* Locket, 1982) of the family Linyphiidae (Hormiga et al., 2003; Platnick, 2005). Thus, the genus *Kuala* Locket, 1982 is a junior homonym of the genus *Kuala* Durette-Desset & Krishnasamy, 1976. According to Article 60 of the International Code of Zoological Nomenclature, I propose for the genus *Kuala* Locket, 1982 the new replacement name *Locketella* nom. nov. The name is given in honour to G. H. Locket who is the current author of the genus name. The name is masculine in gender.

Summary of nomenclatural changes:

Family LINYPHIIDAE

Genus MILLIDGEFA nom. nov.

Remarks: The genus *Notiothauma* was erected by MacLachlan, 1877 with the type species *Notiothauma reedi* MacLachlan, 1877 by monotypy from Chile in the mecopteran family Eomeropidae. Later, the genus *Notiothauma* was described by Millidge, 1991 with the type species *Gongylidiellum aurantiacum* Simon, 1905 by monotypy from Argentina (Hormiga et al., 2003; Platnick, 2005). However, the name *Notiothauma* Millidge, 1991 is invalid under the law of homonymy, being a junior homonym of *Notiothauma* MacLachlan, 1877. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name...
Notiothauma Millidge, 1991 for the nomen novum Millidgefa. The name is dedicated to A. F. Millidge.

Summary of nomenclatural changes:
Millidgefa nom. nov. = Notiothauma Millidge, 1991 (nec MacLachlan, 1877).
Millidgefa aurantiacum (Simon, 1905) comb. nov. = Notiothauma aurantiacum (Simon, 1905) = Gongylidiellum aurantiacum Simon, 1905.

Family LINYPHIIDAE
Genus NEOVALDIVIELLA nom. nov.

Remarks: Firstly, the genus Valdiviella was established by Steuer, 1904 for copepod family Aetideidae with the type species Valdiviella oligarthra Steuer, 1904. Later, the genus Valdiviella was proposed by Millidge, 1985 for spider family Linyphiidae with the type species Valdiviella trisetosa Millidge, 1985 by original designation and monotypy from Chile (Hormiga et al., 2003; Platnick, 2005). However, the name Valdiviella Millidge, 1985 is invalid under the law of homonymy, being a junior homonym of Valdiviella Steuer, 1904. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name Valdiviella Millidge, 1985 for the nomen novum Neovaldiviella.

Summary of nomenclatural changes:
Neovaldiviella nom. nov. = Valdiviella Millidge, 1985 (nec Steuer, 1904).

Family PHILODROMIDAE
Genus EMINELLA nom. nov.

Remarks: Mello-Leitão (1940) proposed the genus Catuna with the type species Catuna ctenops Mello-Leitão, 1940 by monotypy from Argentina in the spider family Philodromidae (Platnick, 2005). Unfortunately, the generic name was already preoccupied by Kirby (1871), who had proposed the genus name Catuna that was proposed with the type species Papilio crithea Drury, 1773 in the butterfly family Nymphalidae. Catuna Kirby, 1871 was introduced as a replacement name for Euomma Felder & Felder, [1867], which is invalid under the law of homonymy. Moreover, Euomma was a replacement name for Jaera Hübner, [1819], which is also invalid under the law of homonymy. Thus, the genus Catuna Mello-Leitão, 1940 is a junior
homonym of the generic name *Catuna* Kirby, 1871. According to Article 60 of the International Code of Zoological Nomenclature, I propose a new replacement name *Eminella nom. nov.* for *Catuna* Mello-Leitão, 1940. The name is dedicated to my colleague Dr. Emine Demir. The name is feminine in gender.

Summary of nomenclatural changes:

Eminella nom. nov. = *Catuna* Mello-Leitão, 1940 (nec Kirby, 1871).

Eminella ctenops (Mello-Leitão, 1940) comb. nov. = *Catuna ctenops* Mello-Leitão, 1940.

Family SALTICIDAE

Genus NECATIA nom. nov.

Remarks: Firstly, the genus *Davidina* was described by Oberthür, 1879 with the type species *Davidina armandi* Oberthür, 1879 by monotypy in the butterfly family Nymphalidae. On the other hand, the genus *Davidia* was proposed by Schenkel, 1963 with the type species *Davidia magnidens* Schenkel, 1963 by original designation from China in the spider family Salticidae (Platnick, 2005). But *Davidia* Schenkel, 1963 is a junior homonym of *Davidia* Hicks, 1873 (Mollusca) and *Davidia* Ribeiro, 1915 (Pisces). Therefore, the name *Davidina* was proposed by Brignoli, 1985 as a replacement name for *Davidia* Schenkel, 1963 preoccupied *Davidia* Hicks, 1873 (Mollusca) and *Davidia* Ribeiro, 1915 (Pisces). At the moment, *Davidina* Brignoli, 1985 is still used as a valid generic name in Araneae (Song et al., 1999; Proszynsky, 2005; Platnick, 2005). However, the name *Davidina* Brignoli, 1985 is also invalid under the law of homonymy, being a junior homonym of *Davidina* Oberthür, 1879. In accordance with article 60 of the International Code of Zoological Nomenclature, fourth edition (1999), I propose to substitute the junior homonym *Davidina* Brignoli, 1985 for the nomen novum *Necatia*. The name is dedicated to Necati Bingöl.

Summary of nomenclatural changes:

Necatia nom. nov. = *Davidina* Brignoli, 1985 (nec Oberthür, 1879).

Family SALTICIDAE

Genus EYUKSELUS nom. nov.

Remarks: The name *Propetes* Walker, 1851 was proposed for a genus of leafhoppers family Cicadellidae (with the type species *Propetes compressa* Walker, 1851) (Young, 1968; MacKamey, 2001). Subsequently, the generic name *Propetes* Menge, 1854 was introduced for a new fossil spider genus (with the type species *Propetes felinus* Menge, 1854) of the family Salticidae (Moore, 1955; Keilbach, 1982). Thus, the genus name *Propetes* Menge, 1854 is a junior homonym of the generic name *Propetes* Walker, 1851. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name *Propetes* Menge, 1854 for the nomen novum *Eyukselus*. The name is dedicated to my colleague Prof. Dr. Eşref Yüksel. The name is masculine in gender.

Summary of nomenclatural changes:

Eyukselus nom. nov. = *Propetes* Menge, 1854 (nec Walker, 1851).

Eyukselus felinus (Menge, 1854) comb. nov. = *Propetes* felinus Menge, 1854.

LITERATURE CITED

MacLachlan, R. 1877. On Notiothauma Reedi, a remarkable new Genus and Species of Neuroptera from Chile, pertaining to the family Panorpidae. Transactions of the Royal Entomological Society of London 1877:427-430.

Proszyński, J. 2003. Salticidae (Araneae) of the World, Part II: Catalogue of Salticidae (Araneae), synthesis of quotations in the world literature since 1940, with basic taxonomic data since 1758, Museum and Institute of Zoology, Polish Academy of Sciences, Ul. Wilcza 64, 00-679 Warsaw, Poland.

BIBLIOGRAPHY OF TURKISH EVEN-TOED UNGULATES (MAMMALIA: ARTIODACTYLA)

İrfan Albayrak*, Nahit Pamukoğlu* and M. Ali Kaya**

* University of Kırıkkale, Faculty of Sciences and Arts, Department of Biology, 71450, Yahşihan, Kırıkkale, TURKEY.
** University of Selçuk, Faculty of Education, Department of Biology, 42075, Meram, Konya, TURKEY.

ABSTRACT: In this study, accessible publications on Turkish even-toed ungulates up to this date were compiled. The order Artiodactyla is represented by 13 species in Turkey, *Sus scrofa*, *Camelus ferus*, *Camelus dromedarius*, *Cervus elaphus*, *Dama dama*, *Capreolus capreolus*, *Gazella dorcas*, *Gazella subgutturosa*, *Bos taurus*, *Bubalus bubalis*, *Capra aegagrus*, *Ovis gmelini* and *Rupicapra rupicapra*. *Capra ibex* and *Gazella gazella* are now known to be extinct species.

KEY WORDS: Bibliography, Artiodactyla, Turkey

In Turkey, the Classis Mammalia is represented by Insectivora, Chiroptera, Carnivora, Cetacea, Perissodactyla, Artiodactyla, Rodentia and Lagomorpha orders.

A considerable amount of knowledge about the Turkish mammals is merely preserved on the library shelves of various governmental institutions because the results from investigations conducted by those bodies generally appear for public use only in their local publications which has no easy and academically accustomed access. The first bibliography of Turkish Fauna was published by The Scientific and Technical Research Council of Turkey (Aytuğ and Çağman, 1972). The other bibliographic study concerning the Turkish mammals was written by Kumerloeve (1975). The latests ones are The bibliographies of Turkish Carnivora, Insectivora and Chiroptera recently published by Albayrak et al. (1997, 1998, 2000).

The aim of this study is to contribute to the researches on the order Artiodactyla and the formation of the bibliography of Turkish Mammalian Fauna.

MATERIALS AND METHOD

For the bibliography of the order Artiodactyla, data was gathered by collaborating with the libraries and archives of Kırıkkale University, Selçuk University, Ankara University; Faculty of Science, Faculty of Letters, Faculty of Agriculture, Faculty of Veterinary; İstanbul University, Faculty of Science; Gazi University Faculty of Sciences and Arts; The National Library; The Ministry of Enviroment and Forestry; The Ministry of Agriculture and Rural Affairs; The Scientific and Technical Research Council of Turkey; The Higher Education Council of...
Turkey; The General Directory of Mineral Research and Exploration of Turkey; The Grand National Assembly of Turkey and their relevant institutions.

Distributions of actual species being feral or domestic were shown in the maps prepared based on the provincial unit. Systematic orders and names of the taxa were given according to Ellerman and Morrison-Scott (1951), Corbet (1978) and Wilson and Reeder (1993). The status of species and subspecies were firstly determined according to IUCN.

RESULTS

The latest literary data obtained on the Turkish even-toed ungulates are given below. According to literature data, Gazella gazella (Pallas, 1776) lived in Southeastern Anatolia but is now an extinct species. Some species are represented by the domesticated species such as Camelus ferus, Camelus dromedarius and Bos taurus.

Order: Artiodactyla
Suborder: Suiformes
Family: Suidae Gray, 1821
Subfamily: Suinae Gray, 1821
Genus: Sus Linnaeus, 1758
Species: Sus scrofa Linnaeus, 1758
Type locality: Germany
Status: Vulnerable

Wild boar inhabits almost the whole Turkey (Fig. 1), but the population size decreases by over hunting.

Suborder: Tylopoda
Family: Camelidae
Genus: Camelus Linnaeus, 1758
Species: Camelus ferus Przewalski, 1883
Type locality: “Bactria” (=Uzbekistan, Bokhora)
Status: Lower risk (Conservation dependent, Extinct in the wild)

Domesticated form of two humped or Asian camel exists in the Western Anatolia though it is rare (Fig. 2).
Species: *Camelus dromedarius* Linnaeus, 1758
Type locality: Africa
Status: Lower risk (Conservation dependent, Extinct in the wild)

Domesticated form of single humped desert camels or “hacin camel” exists in the Southwestern Anatolia (Fig. 3).

Suborder: Ruminantia
Family: Cervidae
Subfamily: Cervinae
Genus: *Cervus* Linnaeus, 1758
Species: *Cervus elaphus* Linnaeus, 1758
Type locality: Europe
Subspecies: *Cervus elaphus maral* Gray, 1850
Type locality: Persia (Iran)
Status: Endangered

Deer is also called as red deer or great deer. It exists in various parts of Turkey (Fig. 4).

Subfamily: Cervinae
Genus: *Dama* Frisch, 1775
Species: *Dama dama* (Linnaeus, 1758)
Type locality: Europa (Sweden)
Subspecies: *Dama dama dama* (Linnaeus, 1775)
Type locality: Europe (Sweden)
Status: Critically endangered

It is called red deer or ‘yağmurca’. It was formerly seen in some part of the Mediterranean Region of Turkey. It is also taken under protection in Düzlerçami near Antalya and in Gökova near Marmaris today. It is also rarely found in Çatalan near Adana and the Manavgat Mountains (Fig. 5).

Subspecies: *Dama dama mesopotamica* Brooke, 1875
Type locality: Luristan, Iran.
Status: Critically endangered

It is also called ‘sığın’. It was formerly reported to live in the Hakkari Province (Fig. 6). However, present status is not known.

Subfamily: Capreolinae
Genus: *Capreolus* Gray, 1821
Species: *Capreolus capreolus* Linnaeus, 1758
Type locality: Europe (Sweden)
Status: Endangered

It is also called karaca, elik or black deer. It formerly lived in the following regions: the Blacksea region, the Marmara region, the Northern Aegean Region, the provinces of İzmir, Antalya, Adana, Osmaniye, Hatay, Hakkari, Erzurum and Kars. It is rarely seen in the Turkish Thrace, the Central Blacksea Region and the Northwestern and Northeastern Anatolia today (Fig. 7).

Family: Bovidae
Subfamily: Antilopinae Gray, 1821
Genus: *Gazella* Blainville, 1816
Species: *Gazella dorcas* (Linnaeus, 1758)
Type locality: Africa (Lower Egypt)
Status: Critically endangered

It is also called “dorkas gazella” and “beatiful eyed gazella”. It was formerly found in the Eastern Mediterranean and the Southeastern Anatolia (Fig. 8).

Species: *Gazella subgutturosa* Güldenstaedt, 1780
Type locality: Azerbaijan, Steppes of East Transcaucasia
Subspecies: *Gazella subgutturosa subgutturosa* Güldenstaedt, 1780
Type locality: North-Western Persia
Status: Critically endangered

It is also called “ahu”, “ceren,” “acem güzeli”, “common gazella”,
“mountain gazella”. It is now under protection in Ceylanpinar near the Urfa province, but some escapers could rarely be seen in the mountains of Urfa (Fig. 9). Its wild population does not exist.

Subfamily: Bovinae
Genus: *Bos* Linnaeus, 1758
Species: *Bos taurus* Linnaeus, 1758
Type locality: Upsala, Sweden
Status: Lower risk (Conservation dependent, Extinct in the wild)

Domestic form of *Bos taurus* exists throughout Turkey (Fig. 10). *Bos taurus* formerly existed in central Anatolia, the western parts of Eastern Anatolia and the central and western part of Southeastern Anatolia till I. B.C. Horn and bone remains are present at Konya Archaeology Museum. Fossils belonging to this species were encountered at the excavations in Elazığ and Kahramanmaraş provinces.

Genus: *Bubalus* Smith, 1827
Species: *Bubalus bubalis* (Linnaeus, 1758)
Type locality: “Asia”? (Habitat in Asia, cultus in Italy)
Status: Lower risk (Conservation dependent, Extinct in the wild)

Domestic water buffalo, mandate or “camız” exists throughout Turkey (Fig. 11). *Bubalus bubalis* formerly lived in the central and western parts of the Eastern Mediterranean, and the Southeastern and Central Anatolia.

Subfamily: Caprinae Gray, 1821
Genus: *Capra* Linnaeus, 1758
Species: *Capra aegagrus* Erxleben, 1777
Type locality: Daghestan, East Caucasus
Subspecies: *Capra aegagrus aegagrus* Erxleben, 1777
Type locality: Daghestan, East Caucasus
Status: Critically endangered
It is also called wild goat, red mountain goat, mountain goat, red goat, yellow goat, rocky goat, big horned goat and bezoar goat. Generally it lives in the Eastern Anatolia and Taurus Mountains of Southern Turkey (Fig. 12).

Family: Bovidae Gray, 1821
Subfamily: Caprinae Gray, 1821
Genus: *Ovis* Linnaeus, 1758
Species: *Ovis gmelini* Blyth, 1840
Type locality: Erzurum, Asia minor
Subspecies: *Ovis gmelini anatolica* Valenciennes, 1856
Type locality: Bulgar Dagh Mountains, Cilician Taurus, Asia minor
Status: Critically endangered

It is called wild sheep, mountain sheep, rocky sheep, Anatolian wild sheep. It was formerly seen in the provinces of Eskişehir, Afyon, Konya and Karaman, and in the Central Taurus mountains. It is under protection only in Bozdağ near the Konya province today (Fig. 13).

Subspecies: *Ovis gmelini gmelini* Blyth, 1841
Type locality: Erzerum, Asia minor
Status: Critically endangered

It is also called the mountain sheep and rocky sheep. It lives in the mountains between the provinces of Iğdır, Van and Hakkari (Fig. 14).

Family: Bovidae
Subfamily: Caprinae Gray, 1821
Genus: *Rupicapra* DeBlainville, 1816
Species: *Rupicapra rupicapra* Linnaeus, 1758
Type locality: Helveticis (Switzerland)
Status: Endangered
Subspecies: *Rupicapra rupicapra asiatica* Lydekker, 1908
Type locality: Trebizond, Asia Minor
Status: Critically endangered
It is also called the steppe goat, black goat, hook horned wild goat. It lives in some parts of Northeastern and Eastern Anatolia (Fig.15).

LITERATURE CITED

Erkan, F. 1987. The Importance and Role of National Parks in the Preservation of Game Animals and Wild Animals which Races have been Vanishing. “Wildlife Fauna in Turkey and in the Balkan Countries”. International Symposium, 16-20 September 1987, Semih Ofset Matbaacılık Ltd. Şti., İstanbul, Turkey, 1-211.

Miller, G. S. 1912. Catologue of the Mammals of Western Europe (Europe exclusive of Russia) in the collection of the British Museum. British Museum (Natural History), London, 1-1019.

Fig. 1. Distribution of *Sus scrofa* in Turkey

Fig. 2. Distribution of the domesticated form of *Camelus ferus* in Turkey

Fig. 3. Distribution of the domesticated form of *Camelus dromedarius* in Turkey
Fig. 4. Distribution of *Cervus elaphus maral* in Turkey

Fig. 5. Distribution of *Dama dama dama* in Turkey

Fig. 6. Distribution of *Dama dama mesopotamica* in Turkey
Fig. 7. Distribution of *Capreolus capreolus* in Turkey

Fig. 8. Distribution of *Gazella dorcas* in Turkey

Fig. 9. Distribution of *Gazella subgutturosa subgutturosa* in Turkey
Fig. 10. Distribution of the domesticated form of *Bos taurus* in Turkey

Fig. 11. Distribution of the domesticated form of *Bubalus bubalis* in Turkey

Fig. 12. Distribution of *Capra aegagrus aegagrus* in Turkey
Fig. 13. Distribution of *Ovis gmelini anatolica* in Turkey

Fig. 14. Distribution of *Ovis gmelini gmelini* in Turkey

Fig. 15. Distribution of *Rupicapra rupicapra asiatica* in Turkey
A NOMENCLATURAL ACT: REPLACEMENT NAMES FOR HOMONYMOUS TACHINID GENERA WITH LEPIDOPTERAN GENERA (DIPTERA: TACHINIDAE)

Hüseyin Özdikmen*

* Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara, TÜRKİYE, e-mail: ozdikmen@gazi.edu.tr

ABSTRACT: Five junior homonyms were detected amongst the Tachinidae genera and the following replacement names are proposed: Currana nom. nov. for Doddiana Curran, 1927; Solomonilla nom. nov. for Ila Baranov, 1938; Bahrettinia nom. nov. for Psilopleura Reinhard, 1943; Mehmetia nom. nov. for Rhamnopteryx Townsend, 1931; Mesnilus nom. nov. for Ziminiola Mesnil, 1978. Accordingly, new combinations are herein proposed for the species currently included in these genera: Currana flavifrons (Malloch, 1930) comb. nov., Currana inermis (Malloch, 1933) comb. nov., Currana pallens (Curran, 1927) comb. nov. and Currana parviseta (Malloch, 1930) comb. nov. from Doddiana Curran, 1927; Solomonilla mirabilis (Baranov, 1938) comb. nov. from Ila Baranov, 1938; Bahrettinia arida (Reinhard, 1943) comb. nov. from Psilopleura Reinhard, 1943; Mehmetia retrorsa (Townsend, 1931) comb. nov. from Rhamnopteryx Townsend, 1931; Mesnilus cyanella (Mesnil, 1978) comb. nov., Mesnilus hexachaeta (Mesnil, 1978) comb. nov., Mesnilus nigella (Mesnil, 1978) comb. nov., Mesnilus plumosa (Mesnil, 1978) comb. nov., Mesnilus prasina (Mesnil, 1978) comb. nov. and Mesnilus setosa (Mesnil, 1978) comb. nov. from Ziminiola Mesnil, 1978

KEY WORDS: nomenclatural changes, homonymy, replacement names, Tachinidae, Diptera.

TAXONOMY

Order Diptera
Family Tachinidae
Genus Currana nom. nov.

Remarks: Curran (1927) proposed the genus Doddiana with the type species Doddiana pallens Curran, 1927 by original designation in the fly family Tachinidae (Diptera) (Cantrell & Crosskey, 1989; O’Hara, 2006). Unfortunately, the generic name was already preoccupied by Turner (1902), who had described the genus Doddiana with the type species Stericta callizona Lower, 1896 by monotypy in the moth family Pyralidae (Lepidoptera). Thus, Doddiana Curran, 1927 is invalid under the law of homonymy, being a junior homonym of Doddiana Turner, 1902. In accordance with article 60 of the International Code of Zoological Nomenclature, fourth edition (1999), I propose to substitute
the junior homonym *Doddiana* Curran, 1927 for the nom. nov. *Currana*.

Etymology: from H. J. Curran who current author name of preexisting genus *Doddiana*.

Distribution: Known from Australian Region: Australia (Qld, NSW).

Summary of nomenclatural changes:

Currana **new replacement name** = *Doddiana* Curran, 1927 (non Turner, 1902)

Currana flavifrons (Malloch, 1930) **comb. nov.** from *Doddiana* Curran, 1927.

Currana inermis (Malloch, 1933) **comb. nov.** from *Doddiana* Curran, 1927.

Currana pallens (Curran, 1927) **comb. nov.** from *Doddiana* Curran, 1927.

Currana parviseta (Malloch, 1930) **comb. nov.** from *Doddiana* Curran, 1927.

Genus Solomonilla nom. nov.

Remarks: The name *Illa* was initially introduced by Warren (1914) for a genus of the moth family Geometridae (with the type species *Illa nefanda* Warren, 1914 by original designation from South Africa: Cape Town). The genus is monotypic and Scoble et al. (1999) included only 1 species in the genus *Illa* Warren, 1914. Subsequently, Baranov (1938) described a new Australian fly genus of the family Tachinidae (with the type species *Illa mirabilis* Baranov, 1938 by original designation) under the same generic name (Cantrell & Crosskey, 1989; O’Hara, 2006). *Illa* Baranov, 1938 is monotypic genus too. Thus, *Illa* Baranov, 1938 is invalid under the law of homonymy, being a junior homonym of *Illa* Warren, 1914. In accordance with article 60 of the International Code of Zoological Nomenclature, fourth edition (1999), I propose for the genus *Illa* Baranov, 1938, 1926 the new replacement name *Solomonilla* **nom. nov.**

Etymology: from Solomon Islands.
Distribution: Known from Australian Region: Solomon Islands.

Summary of nomenclatural changes:

Solomonilla mirabilis (Baranov, 1938) **comb. nov.** from *Illa* Baranov, 1938.

Genus Bahrettinia nom. nov.

Remarks: The genus *Psilopleura* was erected by Druce, 1898 with the type species *Psilopleura polia* Druce, 1898 by monotypy from Brasil: Espiritu Santo in the moth family Arctiidae. Later, the genus *Psilopleura* was described by Reinhard, 1943 with the type species *Psilopleura arida* Reinhard, 1943 from America (O’Hara & Wood, 2004; O’Hara, 2006). However, the name *Psilopleura* Reinhard, 1943 is invalid under the law of homonymy, being a junior homonym of *Psilopleura* Druce, 1898. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name *Psilopleura* Reinhard, 1943 for the nomen novum *Bahrettinia*.

Etymology: The name is dedicated to Bahrettin Demirer.

Distribution: Known from Nearctic Region: America (California, Arizona, New Mexico).

Summary of nomenclatural changes:

Bahrettinia **nom. nov.** = *Psilopleura* Reinhard, 1943 (non Druce, 1898 and Hampson, 1898).

Bahrettinia arida (Reinhard, 1943) **comb. nov.** from *Psilopleura* Reinhard, 1943.

Genus Mehmetia nom. nov.

Remarks: Firstly, the genus *Rhamphopteryx* was established by Bryk, 1913 for the moth family Geometridae with the type species *Rhamphopteryx grotesca* Bryk, 1913 from Sierra Leone. Scoble et al. (1999) included *Neuropolodes* Warren, 1895, *Rhamphopteryx* Bryk, 1913 and *Syndetodes* Warren, 1902 as junior synonyms of *Plegapteryx* Herrich-Schäffer, 1856. But, Pitkin & Jenkins (2004) included *Rhamphopteryx* Bryk, 1913 as a separate available genus and gave only *Ramphopteryx* Bryk, 1913 (incorrect original spelling of *Rhamphopteryx* Bryk, 1913) as junior name. Later, the genus *Rhamphopteryx* was proposed by Townsend, 1931 for the fly family Tachinidae with the type species *Rhamphopteryx retrorsa* Townsend, 1931. Thus, the name *Rhamphopteryx Townsend, 1931 is invalid under the law of homonymy, being a junior homonym of *Rhamphopteryx* Bryk, 1913. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior homonym name *Rhamphopteryx Townsend, 1931 for the nomen novum *Mehmetia*.

Etymology: The name is dedicated to Mehmet Nurullah Demirer.

Distribution: Known from the Neotropical Region.

Summary of nomenclatural changes:

Mehmetia nom. nov. = *Rhamphopteryx* Townsend, 1931 (non Bryk, 1913).

Mehmetia retrorsa (Townsend, 1931) **comb. nov.** from *Rhamphopteryx* Townsend, 1931.

Genus *Mesnilus* nom. nov.

Remarks: The name *Ziminiola* Gerasimov, 1930 was proposed for a genus of the moth family Gelechiidae (with the type species *Ziminiola gussakovskii* Gerasimov, 1930). According to Pitkin & Jenkins (2004), *Ziminiola* Gerasimov, 1930 was downgraded to denote a subgenus of *Rhynchopacha* Staudinger, 1871 by Povolny, 1979. Subsequently, the generic name *Ziminiola* Mesnil, 1978 was introduced for a new fly genus of the family Tachinidae. Thus, the genus name *Ziminiola* Mesnil, 1978 is a junior homonym of the generic name *Ziminiola* Gerasimov, 1930. In accordance with article 60 of the International Code of Zoological Nomenclature, I propose to substitute the junior
homonym name *Ziminiola* Mesnil, 1978 for the nomen novum *Mesnilus*.

Etymology: from L. P. Mesnil who current author name of preexisting genus *Ziminiola*.

Distribution: Known from Afrotropical Region: Madagascan Region: Madagascar.

Summary of nomenclatural changes:

Mesnilus cyanella (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

Mesnilus hexachaeta (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

Mesnilus nigella (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

Mesnilus plumosa (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

Mesnilus prasina (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

Mesnilus setosa (Mesnil, 1978) comb. nov. from *Ziminiola* Mesnil, 1978

LITERATURE CITED

SCIENTIFIC NOTE

ADDITIONAL RECORDS FOR THE ODONATA FAUNA OF ÇORUM PROVINCE (TURKEY)

Ali Salur* and Seda Mesci*

*Hitit University Arts and Sciences Faculty Department of Biology. 19030, Corum, TURKEY. E-mails: alisalur@gmail.com; sedamesci@yahoo.com

As a result of revised literature for determination of the odonatan fauna of Çorum and a few scientific excursion in Çorum, 20 Odonata species were established.

Çorum is in the Black Sea Region of Turkey. According to initial records, Demirsoy (1982), Demirsoy (1995), Kalkman et al., 2004 it was reported that 5 odonatan species collected from Çorum were mentioned. 15 species were added to the Odonata fauna of Çorum with the present study.

In this study, 168 odonatan samples were collected during a few short scientific excursions in 2005-2006 from Çorum province. Information about the localities is given below. All the specimens were deposited in a private collection of the authors. Initial records are marked with (*).

Localities: (Loc 1): Seydim (Seydim Lake), (Loc 2): Beydilli village (marsh), 864 m, 40° 37' N 34° 53' E; (Loc 3): Çorum (Centrum), 827 m, 40° 33' N 34° 57' E; (Loc 4): Göcenovacıği village (small lake), 1157m, 40° 20’ N 34° 50’ E; (Loc 5): Gölünyazı Lake, 1101 m, 40° 41’ N 34° 57’ E; (Loc 6): İskilip (Elmabeli), 40° 53’ N 34° 41’ E; (Loc 7): near Ciftlikçayı, 797 m, 40° 33’ N 34° 56’ E.

Calopterygidae

Lestidae

Lestes macrostigma (Eversmann, 1836): 1♂, (Loc 3), 18/05/2006

Platycnemididae

Coenagrionidae
Erytromma viridulum (Charpentier, 1840)*: 2♀♀, 2♂♂, (Loc 1), 10/07/2006; 2♂♂, 1♀♀, (Loc 1), 29/07/2006; 4♀♀, 13♂♂, (Loc 1), 05/08/2006.
Ischnura elegans (Van Der Linden, 1820)*: 5♂♂, 5♀♀, (Loc 1), 10/06/2006; 1♂, 3♀♀, (Loc 1), 30/06/2006; 2♂♂, 5♀♀, (Loc 1), 10/07/2006; 3♂♂, (Loc 1), 28/07/2006; 2♀♀, (Loc 1), 29/07/2006; 2♀♀, 1♂♂, (Loc 1), 05/08/2006.

Ischnura pumilio (Charpentier, 1825)*: 1♂, (Loc 2), 05/08/2006.

Coenagrion ornatum (Sélys & Hagen, 1850): 1♂, 3♀♀, (Loc 4), 17/06/2005.

Coenagrion scitulum (Rambur, 1824): 2♂, 1♀, (Loc 1), 10/07/2006.

Cercion lindenii (Selys, 1840): 1♂, (Loc 1), 05/08/2006.

Aeshnidae

Anaciaeschna isosceles antehumeralis (Schmidt, 1915): 1♀, (Loc 5), 09/07/2006

Anax imperator (Leach, 1815): 1♂, (Loc 2), 03/06/2006

Libellulidae

Crocothemis erythraea (Brulle, 1832): 1♂, (Loc 5), 09/07/2006; 1♀, (Loc 1), 19/08/2006

Sympetrum sanguineum (Müller, 1764): 1♂, 3♀♀, (Loc 6), 15/08/2005; 1♂, 1♀, (Loc 1), 05/08/2006.

LITERATURE CITED

Demirsoy, A. 1995. Türkiye Faunası, Odonata. TÜBİTAK, 4, 8, 446 pp. (Unpublished project report)

SCIENTIFIC NOTE

KNOWN SPECIES OF TURKISH TACHYCIAXUS
WAGNER, 1939 (HOMOPTERA: AUCHENORRHYNCHA: CIXIIDAE: CIXIINAE)

Emine Demir*

* Gazi University, Faculty of Science & Arts, Department of Biology, 06500 Teknikokullar, Ankara, TURKEY. E-mail: eminedemird@yahoo.com

The aim of the present study is to determine the species of the genus Tachycixius Wagner, 1939 have known from Turkey until now.

It is mentioned that only a few works on Turkish Tachycixius Wagner, 1939 are present as Dlabola, 1971; Kalkandelen, 1988 and Lodos & Kalkandelen, 1980. According to these works, the genus Tachycixius Wagner, 1939 is represented by five species in Turkey. These are Tachycixius bidentifer Dlabola, 1971; Tachycixius creticus Dlabola, 1974; Tachycixius desertorum (Fieber, 1876); Tachycixius logvinenkovae Dlabola, 1974 and Tachycixius pilosus (Oliver, 1791). Among these species, Tachycixius bidentifer Dlabola, 1971 has been recorded by Dlabola, 1971 and Kalkandelen, 1988 from Adana, Gaziantep, Hakkari, İçel, Kahramanmaraş and Mardin provinces, Tachycixius desertorum (Fieber, 1876) has been recorded from Adıyaman, Antalya, Artvin, Diyarbakır, Edirne, Eskişehir, Gaziantep, Hakkari, Yalova, İzmir, Kastamonu, Konya, İçel, Manisa, Mardin, Muğla, Nevşehir, Sinop and Uşak provinces, and Tachycixius pilosus (Oliver, 1791) has been known from Adana, Ankara, Antalya, Balıkesir, Diyarbakır, Tekirdağ and Şanlıurfa provinces in Turkey. However, two of them have few records in Turkey. Tachycixius creticus Dlabola, 1974 has only been reported by Kalkandelen, 1988 from Hatay province. Tachycixius logvinenkovae Dlabola, 1974 has only been recorded by Dlabola, 1974 from the type localities Ankara and Van provinces.

In the present work, collected specimens by the author from Ankara province (Kalecik) in an open Quercus forest in the year 2000 were examined. The specimens were collected by swipping wild herbs in daylight. They were identified by using genitalia and determined as Tachycixius logvinenkovae Dlabola, 1974.

The species Tachycixius logvinenkovae Dlabola, 1974 was described by Dlabola based on 2 female specimens and 1 male specimen from
Ankara (Beynam) and Van (Başkale) in the year of 1974. It is endemic to Turkey.

After original description by Dlabola, 1974, any work is not present on *Tachycixius logvinenkovaev* Dlabola, 1974. This species has been reported for the second time in Turkey with this study.

Material examined: Ankara, Kalecik, 950 m, 23.06.2001, leg. Emine demir & Lütfi Özden, 1 male, 1 female.

LITERATURE CITED

