EVALUATION OF EGG PRESERVATION SCHEDULES FOR BIVOLTINE BREEDS OF THE MULBERRY SILKWORM, BOMBYX MORI L.

Ravindra Singh*, G. Vemananda Reddy*, K. M. Vijaya Kumari*, B. S. Angadi*, and V. Sivaprasad*

* Silkworm Seed Technology Laboratory, NSSO, Central Silk Board, Kodathi, Bangalore - 560 035, Karnataka, INDIA.

[Singh, R., Vemananda Reddy, G., Vijaya Kumari, K. M., Angadi, B. S. & Sivaprasad, V. 2015. Evaluation of egg preservation schedules for bivoltine breeds of the mulberry silkworm, *Bombyx mori* L. Munis Entomology & Zoology, 10 (1): 241-245]

ABSTRACT: Two newly developed bivoltine silkworm breeds SK_6 and SK_7 were evaluated at Silkworm Seed Technology Laboratory, Kodathi, Bangalore by preserving the eggs for 4, 6, 8 and 10 months preservation schedules following 10, 20, 40 and 60 days aestivation period respectively. The results indicated that fecundity ranged from 519 to 574 and 531 to 573, hatching percentage ranged from 92.39 to 96.30 % and 92.99 to 97.60, effective rate of rearing (ERR) ranged from 9075 to 9560 and 8941 to 9445, pupation percentage ranged from 91.70 to 96.88 and 89.70 to 95.99 %, cocoon weight ranged from 1.528 to 1.647 and 1.584 to 1.626 g, cocoon shell weight ranged from 0.244 to 0.284 and 0.269 to 0.279 g and cocoon shell percentage ranged from 15.97 to 17.53 and 16.65 to 17.61 % in SK₆ and SK₇ respectively. The hatchability and rearing performance of SK₆ and SK₇ were elmost similar in 4, 6, 8 and 10 months preserved eggs. Both bivoltine silkworm breeds SK₆ and SK₇ were test verified in the field through Basic Seed Farms of National Silkworm Seed Organization (NSSO), Central Silk Board and the cocoon yield ranged from 50 to 75 kg and 51 to 71.840 kg/100 dfls in SK₆ and SK₇, respectively.

KEY WORDS: Bivoltine breeds, Bombyx mori, Egg preservation, Evaluation, SK6 and SK7.

Studies on long-term preservation schedules have been carried out in diapause (Reddy et al., 2004; Shirota, 2004; 2005; Khatri et al., 2005; Machida, 2007; 2009; Iizuka et al., 2008; Rajanna et al., 2008; Banno et al., 2013; Ravindra Singh et al., 2014;) and non - diapause eggs (Kumareshan et al., 2004; Ravindra Singh et al., 2010; Rajanna et al., 2009; 2011) of the mulberry silkworm, Bombyx mori L. Two bivoltine silkworm breeds SK_6 and SK_7 developed at CSRTI, Berhampore, West Bengal, do not have the full-fledged seed technology aspects so as to handle these breeds with proper approaches at different stages. The foundation cross SK₆ x SK- is being used in East and North-east India for commercial cocoon production as well as preparation of cross breed eggs. Studies on these breeds will help in the development of suitable seed handling techniques and facilitate the sericulturists to produce quality cocoons. In South India, 4 and 6 months schedules are commonly used for the preservation of bivoltine seed. Whereas, in the temperate or subtemperate zones of North India, one year schedule is being used to conduct silkworm rearing only during spring season. The present study has been undertaken to know the performance of two bivoltine breeds SK₆ and SK₇ following 4, 6, 8 and 10 months egg preservation schedules to obtain quality silk and sustainable cocoon crops in the northeastern regions of India.

MATERIALS AND MEHODS

Eggs of two bivoltine breeds SK_6 and SK_7 were generated and preserved for 4, 6, 8 and 10 months preservation schedules following 10, 20, 40 and 60 days

aestivation period. Eggs of SK₆ and SK₇ were released as per the schedule and rearing was conducted. Three replications were maintained with 250 larvae in each replication. Data were recorded for seven economic characters *viz.*, fecundity, hatching percentage, effective rate of rearing, pupation percentage, cocoon weight, cocoon shell weight and cocoon shell percentage. Besides, data pertaining SK₆ and SK₇ for seven economic characters *viz.*, fecundity, hatching percentage, cocoon yield/100dfls, pupation percentage, cocoon weight, cocoon shell weight and cocoon shell percentage reared at different units of NSSO were also collected. Different egg preservation schedules have been depicted in Figs. 1-4.

RESULTS AND DISCUSSION

Performance of bivoltine breed SK₆ during different preservation schedules has been given in Table 1. Maximum fecundity (574) was observed following 6 months preservation schedule followed by 8 months hibernation schedule (568). Hatching percentage was recorded maximum (96.30%) during 4 months schedule followed by 6 months schedule (94.48%). Effective rate of rearing (ERR) was observed maximum (9560) followed by 6 months hibernation schedule (9293) whereas pupation was recorded maximum (96.88%) during 4 months hibernation schedule followed by 10 months schedule (93.86). Maximum cocoon weight was observed during 4 months schedule (1.647 g) followed by 6 months schedule (1.621 g). Cocoon shell weight was recorded maximum (0.284 g) in 4 months hibernation schedule followed by 6 months schedule (0.282 g) and maximum cocoon shell percentage (17.53 %) was observed during 10 months hibernation schedule followed by 4 months schedule (17.24 %).

Mean performance of bivoltine breed SK_7 during different preservation schedules has been given in Table 2. Maximum fecundity (573) was observed following 4 months preservation schedule followed by 6 months hibernation schedule (566). Hatching percentage was recorded maximum (97.60 %) during 4 months schedule followed by 6 months schedule (95.01 %). Effective rate of rearing (ERR) was observed maximum (9445) during 4 months hibernation schedule followed by 6 months hibernation schedule (9401) whereas pupation was recorded maximum (95.99 %) during 4 months hibernation schedule followed by 10 months schedule (94.97 %). Maximum cocoon weight was observed during 8 months schedule (1.626 g) followed by 6 months schedule (1.615 g). Cocoon shell weight was maximum (0.279 g) in 10 months hibernation schedule followed by 4 months schedule (0.278 g) and maximum cocoon shell percentage (17.61 %) was recorded during 10 months hibernation schedule followed by 4 months schedule (17.28 %). Larval and cocoon photographs of SK₆ and SK₇ have been depicted in Plate 1.

Rearing performance of SK₆ and SK₇ reared from March,2012 to March, 2014 utilizing 1000 dfls of each breed at 5 units of NSSO namely, P3, BSF, Majra, P3, BSF, Mysore, P2, BSF, Gavimata, P2, BSF, Nagamangala, and P1, Madakasira have been given in Table 3 and 4 respectively. The results indicated that fecundity ranged from 420 to 563 and 451 to 550, hatching ranged from 90.11 to 97.00 % and 94.10 to 98.30, cocoon yield/100dfls ranged from 50.000 to 75.000 kg and 51.000 to 71.840 kg, pupation ranged from 89.50 to 96.20 and 81.40 to 98.00 %, cocoon weight ranged from 1.401 to 1.800 g and 1.356 to 1.795 g, cocoon shell weight ranged from 0.232 to 0.377 g and 0.235 to 0.375 g and cocoon shell percentage ranged from 16.13 to 20.94 % and 16.32 to 20.89 % in SK₆ and SK₇ respectively. The mean fecundity was 501 and 497, hatching 95.00 and 95.62, cocoon yield/100 dfls 64.502 and 62.489 kg, pupation 92.52 and 92.14 %, cocoon weight 1.563 and

1.524 g, cocoon shell weight 0.283 and 0.285 g and cocoon shell percentage was 18.03 and 18.68 % in SK₆ and SK₇, respectively.

Studies on long-term preservation schedules have been carried out in tropical univoltine "Barpat" (Ravindra Singh et al., 2014), bivoltine eggs (Reddy et al., 2004; Rajanna et al., 2008) and non - diapause eggs (Kumareshan et al., 2004 The study on these breeds helps in the development of suitable seed handling techniques which will facilitate the sericulturists to produce quality cocoons. Silkworm Seed Technology Laboratory, NSSO, CSB, Bangalore has developed suitable schedules for preservation of bivoltine silkworm eggs under Indian conditions and were evolved for pure as well as hybrid eggs by following these schedules, eggs could be preserved from 110 \sim 335 days without causing any weakness to the embryos of the mulberry silkworm, *B. mori* (Reddy, et al. 2004; Ravindra Singh et al., 2010; Rajanna et al., 2009; 2011).

Optimum temperature for chilling (Shirota, 2004) and suppression of diapause development at -5° C and 0° C during long-term preservation of diapause eggs of silkworm, *B. mori* have been studied (Shirota, 2005). Khatri et al. (2005) have studied preservation schedules for silkworm seed under north Indian condition. Several attempts have been made to develop long-term preservation schedule for diapause eggs in silkworm, *B. mori* (Matsuno & Shimizu, 1979; Machida, 2007; Machida et al., 2009; Iizuka et al., 2008). Recently, Banno et al. (2013) have developed a method for long-term preservation of silkworm strains using frozen ovaries.

Exploitation of SK_6 and SK_7 possessing quality silk coupled with hardiness character will not only improve the quality of silk but also will facilitate to obtain sustainable silkworm crops. Study on egg preservation schedule of these breeds would be an added advantage in order to obtain silkworm eggs as and when required.

LITERATURE CITED

Banno, Y., Nagasaki, K., Tsukada, M., Minohara, Y., Banno, J., Nishikawa, K., Yamamoto, K, Tamura, K & Fujii, T. 2013. Development of a method for long-term preservation of *Bombyx mori* silkworm strains using frozen ovaries. Cryobiology, 66 (3): 283-287.

lizuka, T., Mase, K., Okada, E. & Yamamoto, T. 2008. Development of long-term storage method for diapause eggs in some hybrid races of *Bombyx mori*. J. Insect. Biotech. Sericol., 77 (2): 67-70.

Khatri, R. K., Babulal, Šiddiqui, A. A., Sharma, A. K., Bhardwaj, N. G., Bhakuni, B. S. & Kharoo, V. K. 2005. Preservation schedule for mulberry silkworm seed under north Indian condition. Indian Silk., 44 (1): 7-9.

Kumareshan, P., Thangavelu, K. & Sinha, R. K. 2004. Studies on long-term preservation of eggs of Indian tropical multivoltine silkworm (*Bombyx mori* L.) genetic resources. Int. J. Indust. Entomol., 9 (1): 79-87.

Machida, Y. 2007. Studies on low temperature two year preservation and long-term cryo-preservation of genetic resources of the silkworm, *Bombyx mori*. J. Dainippon Silk Foundation, 55: 1-52.

Machida, Y., Takemura, Y., Matsumoto, M., Kanekatsu, R. & Kiguchi, K. 2009. Long-term preservation of silkworm eggs at a low temperature and its effect on their progenies. J. Seric. Sci. Japan., 75 (1): 37-43.

Matsuno, M. & Shimizu, K. 1979. Studies on long-term cold storage of silkworm genetic resources (5). Hatchability and results of rearing after two years egg storage. Acta Sericologica, 110: 67-75.

Rajanna, K. L., Jayarama Raju, P., Prabhakar, C. J. & Kamble, C. K. 2008. Long-term preservation of acid treated bivoltine eggs in silkworm *Bombyx mori* L. Int. J. Indust. Entomol., 17 (2): 165-168. Rajanna, K. L., Jayarama Raju, P., Prabhakar, C. J. & Kamble, C. K. 2009. Studies on long-term preservation of

Rajanna, K. L., Jayarama Raju, P., Prabhakar, C. J. & Kamble, C. K. 2009. Studies on long-term preservation of non-diapause eggs in silkworm *Bombyx mori* L. Indian J. Seric., 48 (2): 156-161.

Rajanna, K. L., Reddy, G. V., Harlapur, V. K. & Basavaraja, H. K. 2011. Development of new cold storage preservation technology for cross breed (PM × CSR2) eggs of silkworm, *Bombyx mori* L. Sericologia, 51 (1): 77-85.

Ravindra Singh, Nirupama, R. & Gangopadhyay, D. 2010. Effect of refrigeration of non- diapause eggs of the mulberry silkworm, *Bombyx mori* L. Sericologia, 50 (1): 129-132.

Ravindra Singh, Reddy, G. V., Rajanna, K. L., Vijaya Kumari, K. M., Angadi, B. S. & Sivaprasad, V. 2014. Development of egg presevation schedules of a tropical univoltine race "Barpat" of the silkworm, *Bombyx mori* L. Mun. Ent. Zool., 9 (1): 521-524.

Reddy, G. V., Veeraiah, T. M. & Samson, M. V. 2004. Silkworm seed preservation schedules for bivoltines- New dimensions. Indian J. Seric., 43 (1): 25-34.

Shirota, T. 2004. Two year preservation of diapause eggs of silkworm, Bombyx mori I. Optimum temperatures for the egg chilling. J. Dainippon Silk Foundation, 52: 17-20.
Shirota, T. 2005. Two year preservation of diapause eggs of silkworm, Bombyx mori II.Suppression of a diapause

Shirota, T. 2005. Two year preservation of diapause eggs of silkworm, *Bombyx mori* II.Suppression of a diapause development in cold storage at -5°C and 0°C. J. Dainippon Silk Foundation, 53: 7-10.

Table 1. Performance of bivoltine	brood SV, during d	different hibernation cabedules
Table 1. Ferror mance of providine	DIEEU SK6 UUIIIE U	interent indernation schedules.

Preservation schedule	Fecundity (No.)	Hatching %	Effective Rate of Rearing (ERR)	Pupation (%)	Cocoon Weight (g)	Cocoon shell weight (g)	Cocoon shell %
4 months	536	96.30	9560	96.88	1.647	0.284	17.24
	± 43	± 2.03	± 128	± 1.39	± 0.03	± 0.007	± 0.33
6 months	574	94.48	9293	91.70	1.621	0.277	17.08
	± 7	± 1.38	± 185	± 2.94	± 0.04	± 0.004	± 0.33
8 months	568	94.45	9190	93.59	1.528	0.244	15.97
	± 25	± 0.79	± 496	± 2.21	± 0.13	± 0.03	± 1.01
10 months	519	92.39	9075	93.86	1.608	0.282	17.53
10 months	± 12	92.39 ± 1.61	9075 ± 245	93.00 ± 0.03	± 0.03	± 0.01	± 0.64

Data mean ± SD of six replications

Table 2. Performance of bivoltine breed SK_7 during different hibernation schedules.

Preservation schedule	Fecundity (No.)	Hatching %	Effective Rate of Rearing (ERR)	Pupation (%)	Cocoon Weight (g)	Cocoon shell weight (g)	Cocoon shell %
4 months	573	97.60	9445	95.99	1.608	0.278	17.28
	± 50	± 1.15	± 182	± 1.76	± 0.03	± 0.01	± 0.33
6 months	566	95.01	9401	94.27	1.615	0.269	16.65
	± 21	± 2.46	± 459	± 1.65	± 0.06	± 0.01	± 0.72
8 months	554	94.85	8941	89.70	1.626	0.277	17.03
	± 47	± 2.90	± 740	± 3.81	± 0.20	± 0.04	± 0.75
10 months	531	92.99	9214	94.97	1.584	0.279	17.61
	± 26	± 2.04	± 215	± 0.83	± 0.10	± 0.02	± 0.35

Data mean ± SD of six replications

Table 3. Performance of bivoltine breeds SK6 evaluated at different units of NSSO.

Unit	Season	Fecundity (No.)	Hatching %	Cocoon yield/100 dfls (kg)	Pupation (%)	Cocoon Weight (g)	Cocoon shell weight (g)	Cocoon shell %
P3, Majra	Mar, 12	560	95.80	73.000	96.00	1.800	0.377	20.94
P3, Mysore	Mar, 12	541	93.30	70.600	90.70	1.460	0.263	18.01
-do-	Jun, 12	420	95.80	55.000	92.10	1.519	0.261	17.18
-do-	Aug, 12	522	95.50	73.000	90.30	1.595	0.285	17.87
-do-	Oct, 12	493	95.90	71.200	89.50	1.678	0.307	18.30
-do-	Dec, 12	469	96.10	60.000	94.50	1.505	0.282	18.74
-do-	May, 13	504	93.70	68.000	90.50	1.761	0.320	18.17
-do-	Aug, 13	563	96.70	75.000	90.90	1.486	0.257	17.27
P2, Gavimata	May, 12	493	95.20	70.500	96.20	1.584	0.274	17.30
-do-	May, 13	500	97.00	56.300	90.00	1.520	0.287	18.88
P2, Nagamangla	Feb, 13	495	94.90	60.920	95.00	1.575	0.280	17.78
-do-	Jul, 13	475	90.11	50.000	96.00	1.438	0.232	16.13
P1, Madakasira	Jul, 13	477	95.00	55.000	91.06	1.401	0.249	17.77
Mean ±	SD	501 ±39	95.00 ±1.80	64.502 ±8.54	92.52 ±2.59	1.563 ±0.12	0.283 ±0.03	18.03 ±1.13

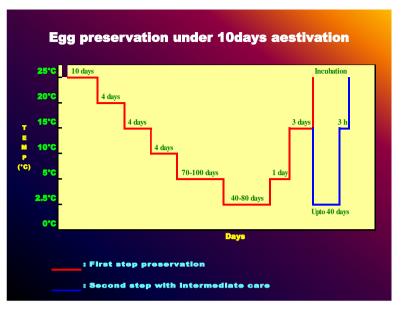

Unit	Season	Fecun- dity (No.)	Hatching %	Cocoon yield/100 dfls (kg)	Pupation (%)	Cocoon weight (g)	Cocoon shell weight (g)	Cocoon shell %
P3, Majra	Mar, 12	550	94.50	71.840	95.00	1.795	0.375	20.89
P3, Mysore	Mar, 12	530	96.95	68.800	90.10	1.433	0.279	19.47
-do-	Jun, 12	451	95.00	56.000	91.20	1.437	0.278	19.35
-do-	Aug, 12	460	96.90	58.670	91.70	1.599	0.299	18.70
-do-	Oct, 12	528	95.10	71.200	90.70	1.655	0.300	18.13
-do-	Dec, 12	463	95.50	52.500	94.70	1.356	0.266	19.62
-do-	May, 13	473	94.10	54.000	81.40	1.538	0.296	19.25
-do-	Aug, 13	548	96.10	71.000	90.40	1.404	0.241	17.17
P2, Gavimata	May, 12	516	94.90	65.500	96.40	1.675	0.337	20.12
-do-	May, 13	506	98.30	67.170	90.00	1.530	0.274	17.91
P2, Nagamangla	Feb, 13	519	96.80	70.820	98.00	1.592	0.288	18.09
-do-	Jul, 13	470	94.89	53.860	97.00	1.440	0.235	16.32
P1 Madakasira	Jul, 13	451	94.00	51.000	91.27	1.353	0.239	17.66
Mean :	SD	497 ±37	95.62 ±1.29	62.489 ±8.22	92.14 ±1.30	1.524 ±0.13	0.285 ±0.03	18.68 ±1.26

Table 4. Performance of bivoltine breeds SK₇ evaluated at different units of NSSO.

Plate I. Larval and cocoon photographs of bivoltine breed SK_6 and SK_7: 1. Larvae of SK_6 2. Larvae of SK_7, 3. Cocoons of SK_6 and 4. Cocoons of SK_7.

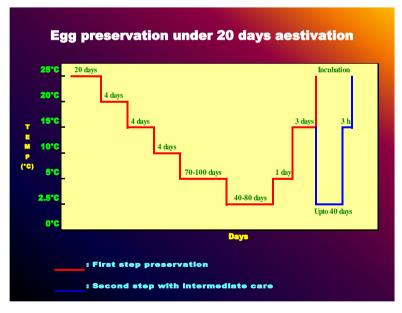


Figure 1. Hibernation schedule with 10 days aestivation 110 - 220 days.

Figure 2. Hibernation schedule with 20 days aestivation 110 - 220 days.

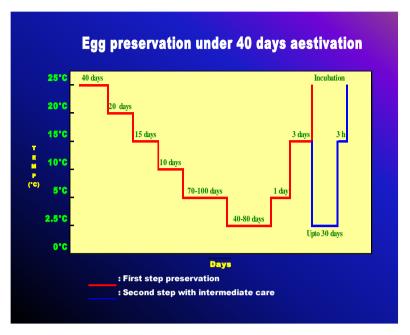


Figure 3. Hibernation schedule with 40 days aestivation for 190 - 300 days.

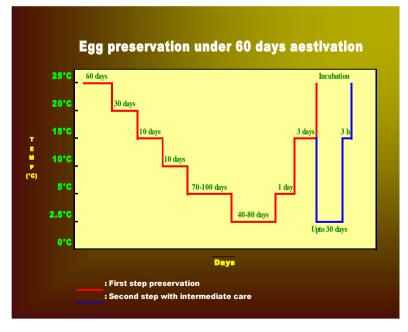


Figure 4. Hibernation schedule with 60 days aestivation for 220 - 325 days.